This book collects nine related mathematical essays which will intrigue and inform. From the reviews: "The authors put their writing where their talents are, and students get to see just how alive mathematics is...there is much to commend the book. It contains plenty of interesting mathematics, often going in unusual directions. I like the diagrams; the authors have chosen mathematics that involves especially pretty ones." --THE MATHEMATICAL ASSOCIATION OF AMERICA
A relaxed and informal presentation conveying the joy of mathematical discovery and insight. Frequent questions lead readers to see mathematics as an accessible world of thought, where understanding can turn opaque formulae into beautiful and meaningful ideas. The text presents eight topics that illustrate the unity of mathematical thought as well as the diversity of mathematical ideas. Drawn from both "pure" and "applied" mathematics, they include: spirals in nature and in mathematics; the modern topic of fractals and the ancient topic of Fibonacci numbers; Pascals Triangle and paper folding; modular arithmetic and the arithmetic of the infinite. The final chapter presents some ideas about how mathematics should be done, and hence, how it should be taught. Presenting many recent discoveries that lead to interesting open questions, the book can serve as the main text in courses dealing with contemporary mathematical topics or as enrichment for other courses. It can also be read with pleasure by anyone interested in the intellectually intriguing aspects of mathematics.
This book starts with simple arithmetic inequalities and builds to sophisticated inequality results such as the Cauchy-Schwarz and Chebyshev inequalities. Nothing beyond high school algebra is required of the student. The exposition is lean. Most of the learning occurs as the student engages in the problems posed in each chapter. And the learning is not “linear”. The central topic of inequalities is linked to others in mathematics. Often these topics relate to much more than algebraic inequalities. There are also “secret” pathways through the book. Each chapter has a subtext, a theme which prepares the student for learning other mathematical topics, concepts, or habits of mind. For example, the early chapters on the arithmetic mean/geometric mean inequality show how very simple observations can be leveraged to yield useful and interesting results. Later chapters give examples of how one can generalize a mathematical statement. The chapter on the Cauchy-Schwarz inequality provides an introduction to vectors as mathematical objects. And there are many other secret pathways that the authors hope the reader will discover—and follow. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Designed for students preparing to engage in their first struggles to understand and write proofs and to read mathematics independently, this is well suited as a supplementary text in courses on introductory real analysis, advanced calculus, abstract algebra, or topology. The book teaches in detail how to construct examples and non-examples to help understand a new theorem or definition; it shows how to discover the outline of a proof in the form of the theorem and how logical structures determine the forms that proofs may take. Throughout, the text asks the reader to pause and work on an example or a problem before continuing, and encourages the student to engage the topic at hand and to learn from failed attempts at solving problems. The book may also be used as the main text for a "transitions" course bridging the gap between calculus and higher mathematics. The whole concludes with a set of "Laboratories" in which students can practice the skills learned in the earlier chapters on set theory and function theory.
In this broad introduction to topology, the author searches for topological invariants of spaces, together with techniques for their calculating. Students with knowledge of real analysis, elementary group theory, and linear algebra will quickly become familiar with a wide variety of techniques and applications involving point-set, geometric, and algebraic topology. Over 139 illustrations and more than 350 problems of various difficulties help students gain a thorough understanding of the subject.
This challenging book argues that a new way of speaking of mathematics and describing it emerged at the end of the 16th century. Leading mathematicians began referring to their field in terms drawn from the exploration accounts of Columbus and Magellan. Many of those who promoted the vision of mathematics as heroic exploration also played central roles in developing the most important mathematical innovation of the period?the infinitesimal methods, which the author shows was no coincidence.
Designed for students having no previous experience with rigorous proofs, this text can be used immediately after standard calculus courses. It is highly recommended for anyone planning to study advanced analysis, as well as for future secondary school teachers. A limited number of concepts involving the real line and functions on the real line are studied, while many abstract ideas, such as metric spaces and ordered systems, are avoided completely. A thorough treatment of sequences of numbers is used as a basis for studying standard calculus topics, and optional sections invite students to study such topics as metric spaces and Riemann-Stieltjes integrals.
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
From the reviews "This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." --Mathematical Gazette
The unifying approach of functional analysis is to view functions as points in abstract vector space and the differential and integral operators as linear transformations on these spaces. The author's goal is to present the basics of functional analysis in a way that makes them comprehensible to a student who has completed courses in linear algebra and real analysis, and to develop the topics in their historical contexts.