Mathematical Theory of Domains

Mathematical Theory of Domains

Author: V. Stoltenberg-Hansen

Publisher: Cambridge University Press

Published: 1994-09-22

Total Pages: 366

ISBN-13: 9780521383448

DOWNLOAD EBOOK

Introductory textbook/general reference in domain theory for professionals in computer science and logic.


Nonlinear Potential Theory on Metric Spaces

Nonlinear Potential Theory on Metric Spaces

Author: Anders Björn

Publisher: European Mathematical Society

Published: 2011

Total Pages: 422

ISBN-13: 9783037190999

DOWNLOAD EBOOK

The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.


Bipartite Graphs and Their Applications

Bipartite Graphs and Their Applications

Author: Armen S. Asratian

Publisher: Cambridge University Press

Published: 1998-07-13

Total Pages: 283

ISBN-13: 9780521593458

DOWNLOAD EBOOK

This is the first book which deals solely with bipartite graphs. Together with traditional material, the reader will also find many new and unusual results. Essentially all proofs are given in full; many of these have been streamlined specifically for this text. Numerous exercises of all standards have also been included. The theory is illustrated with many applications especially to problems in timetabling, Chemistry, Communication Networks and Computer Science. For the most part the material is accessible to any reader with a graduate understanding of mathematics. However, the book contains advanced sections requiring much more specialized knowledge, which will be of interest to specialists in combinatorics and graph theory.