Mathematical Topics in Population Genetics

Mathematical Topics in Population Genetics

Author: Ken-ichi Kojima

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 408

ISBN-13: 3642462448

DOWNLOAD EBOOK

A basic method of analyzing particulate gene systems is the proba bilistic and statistical analyses. Mendel himself could not escape from an application of elementary probability analysis although he might have been unaware of this fact. Even Galtonian geneticists in the late 1800's and the early 1900's pursued problems of heredity by means of mathe matics and mathematical statistics. They failed to find the principles of heredity, but succeeded to establish an interdisciplinary area between mathematics and biology, which we call now Biometrics, Biometry, or Applied Statistics. A monumental work in the field of popUlation genetics was published by the late R. A. Fisher, who analyzed "the correlation among relatives" based on Mendelian gene theory (1918). This theoretical analysis over came "so-called blending inheritance" theory, and the orientation of Galtonian explanations for correlations among relatives for quantitative traits rapidly changed. We must not forget the experimental works of Johanson (1909) and Nilsson-Ehle (1909) which supported Mendelian gene theory. However, a large scale experiment for a test of segregation and linkage of Mendelian genes affecting quantitative traits was, prob ably for the first time, conducted by K. Mather and his associates and Panse in the 1940's.


Some Mathematical Models from Population Genetics

Some Mathematical Models from Population Genetics

Author: Alison Etheridge

Publisher: Springer Science & Business Media

Published: 2011-01-07

Total Pages: 129

ISBN-13: 3642166318

DOWNLOAD EBOOK

This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.


Mathematical Population Genetics 1

Mathematical Population Genetics 1

Author: Warren J. Ewens

Publisher: Springer Science & Business Media

Published: 2004-01-09

Total Pages: 448

ISBN-13: 9780387201917

DOWNLOAD EBOOK

This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.


Mathematical Population Genetics 1

Mathematical Population Genetics 1

Author: Warren J. Ewens

Publisher: Springer Science & Business Media

Published: 2012-10-01

Total Pages: 435

ISBN-13: 038721822X

DOWNLOAD EBOOK

This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.


Theoretical Population Genetics

Theoretical Population Genetics

Author: J.S. Gale

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 428

ISBN-13: 9400903871

DOWNLOAD EBOOK

The rise of the neutral theory of molecular evolution seems to have aroused a renewed interest in mathematical population genetics among biologists, who are primarily experimenters rather than theoreticians. This has encouraged me to set out the mathematics of the evolutionary process in a manner that, I hope, will be comprehensible to those with only a basic knowledge of calculus and matrix algebra. I must acknowledge from the start my great debt to my students. Equipped initially with rather limited mathematics, they have pursued the subject with much enthusiasm and success. This has enabled me to try a number of different approaches over the years. I was particularly grateful to Dr L. J. Eaves and Professor W. E. Nance for the opportunity to give a one-semester course at the Medical College of Virginia, and I would like to thank them, their colleagues and their students for the many kindnesses shown to me during my visit. I have concentrated almost entirely on stochastic topics, since these cause the greatest problems for non-mathematicians. The latter are particularly concerned with the range of validity of formulae. A sense of confidence in applying these formulae is, almost certainly, best gained by following their derivation. I have set out proofs in fair detail, since, in my experience, minor points of algebraic manipulation occasionally cause problems. To avoid loss of continuity, I have sometimes put material in notes at the end of chapters.


Understanding Population Genetics

Understanding Population Genetics

Author: Torbjörn Säll

Publisher: John Wiley & Sons

Published: 2017-09-25

Total Pages: 290

ISBN-13: 1119124034

DOWNLOAD EBOOK

An inspiring introduction to a vital scientific field. The reader is taken through ten mathematical derivations that lead to important results, explaining in a hands-on manner the key concepts and methods of theoretical population genetics. The derivations are carefully worked out and easy to follow. Particular attention is given to the underlying assumptions and the mathematics used. The results are discussed and broadened out with relevant current implications. All topics feature questions with helpful answers. The book is intended for the reader who already knows some population genetics but requires a more comprehensive understanding. It is particularly suited to those who analyse genetic data and wish to better grasp what their results actually mean. It will also be helpful for those who wish to understand how population genetics contributes to the explanation of evolution. Or as the writers claim: If one wants to understand life – in all its improbable and amazing richness – one must start by understanding population genetics.


Mathematics of Genetic Diversity

Mathematics of Genetic Diversity

Author: J. F. C. Kingman

Publisher: SIAM

Published: 1980-01-01

Total Pages: 78

ISBN-13: 0898711665

DOWNLOAD EBOOK

This book draws together some mathematical ideas that are useful in population genetics, concentrating on a few aspects which are both biologically relevant and mathematically interesting.


Mathematical Population Genetics 1

Mathematical Population Genetics 1

Author: Warren J. Ewens

Publisher: Springer

Published: 2012-11-06

Total Pages: 418

ISBN-13: 9781468495881

DOWNLOAD EBOOK

This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.


Information Geometry and Population Genetics

Information Geometry and Population Genetics

Author: Julian Hofrichter

Publisher: Springer

Published: 2017-02-23

Total Pages: 323

ISBN-13: 3319520458

DOWNLOAD EBOOK

The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.