Mathematical Thought and its Objects

Mathematical Thought and its Objects

Author: Charles Parsons

Publisher: Cambridge University Press

Published: 2007-12-24

Total Pages: 400

ISBN-13: 1139467271

DOWNLOAD EBOOK

Charles Parsons examines the notion of object, with the aim to navigate between nominalism, denying that distinctively mathematical objects exist, and forms of Platonism that postulate a transcendent realm of such objects. He introduces the central mathematical notion of structure and defends a version of the structuralist view of mathematical objects, according to which their existence is relative to a structure and they have no more of a 'nature' than that confers on them. Parsons also analyzes the concept of intuition and presents a conception of it distantly inspired by that of Kant, which describes a basic kind of access to abstract objects and an element of a first conception of the infinite.


Introduction to Mathematical Thinking

Introduction to Mathematical Thinking

Author: Keith J. Devlin

Publisher:

Published: 2012

Total Pages: 0

ISBN-13: 9780615653631

DOWNLOAD EBOOK

"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.


Greek Mathematical Thought and the Origin of Algebra

Greek Mathematical Thought and the Origin of Algebra

Author: Jacob Klein

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 246

ISBN-13: 0486319814

DOWNLOAD EBOOK

Important study focuses on the revival and assimilation of ancient Greek mathematics in the 13th-16th centuries, via Arabic science, and the 16th-century development of symbolic algebra. 1968 edition. Bibliography.


How Not to Be Wrong

How Not to Be Wrong

Author: Jordan Ellenberg

Publisher: Penguin Press

Published: 2014-05-29

Total Pages: 480

ISBN-13: 1594205221

DOWNLOAD EBOOK

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.


The Origin of the Logic of Symbolic Mathematics

The Origin of the Logic of Symbolic Mathematics

Author: Burt C. Hopkins

Publisher: Indiana University Press

Published: 2011-09-07

Total Pages: 593

ISBN-13: 0253005272

DOWNLOAD EBOOK

Burt C. Hopkins presents the first in-depth study of the work of Edmund Husserl and Jacob Klein on the philosophical foundations of the logic of modern symbolic mathematics. Accounts of the philosophical origins of formalized concepts—especially mathematical concepts and the process of mathematical abstraction that generates them—have been paramount to the development of phenomenology. Both Husserl and Klein independently concluded that it is impossible to separate the historical origin of the thought that generates the basic concepts of mathematics from their philosophical meanings. Hopkins explores how Husserl and Klein arrived at their conclusion and its philosophical implications for the modern project of formalizing all knowledge.


Mathematics for Human Flourishing

Mathematics for Human Flourishing

Author: Francis Su

Publisher: Yale University Press

Published: 2020-01-07

Total Pages: 287

ISBN-13: 0300237138

DOWNLOAD EBOOK

"The ancient Greeks argued that the best life was filled with beauty, truth, justice, play and love. The mathematician Francis Su knows just where to find them."--Kevin Hartnett, Quanta Magazine" This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart."--James Tanton, Global Math Project For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity's most beautiful ideas. In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award-winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires--such as for play, beauty, freedom, justice, and love--and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother's, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher's letters to the author appear throughout the book and show how this intellectual pursuit can--and must--be open to all.


Mathematics and Its Applications

Mathematics and Its Applications

Author: Jairo José da Silva

Publisher: Springer

Published: 2017-08-22

Total Pages: 274

ISBN-13: 3319630733

DOWNLOAD EBOOK

This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what does it mean to exist, mathematical structures: what are they and how do we know them, how different layers of mathematical structuring relate to each other and to perceptual structures, and how to use mathematics to find out how the world is. The book simultaneously develops along two lines, both inspired and enlightened by Edmund Husserl’s phenomenological philosophy. One line leads to the establishment of a particular version of mathematical structuralism, free of “naturalist” and empiricist bias. The other leads to a logical-epistemological explanation and justification of the applicability of mathematics carried out within a unique structuralist perspective. This second line points to the “unreasonable” effectiveness of mathematics in physics as a means of representation, a tool, and a source of not always logically justified but useful and effective heuristic strategies.


Mathematical Structuralism

Mathematical Structuralism

Author: Geoffrey Hellman

Publisher: Cambridge University Press

Published: 2018-11-29

Total Pages: 167

ISBN-13: 110863074X

DOWNLOAD EBOOK

The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the Element considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives.


An Introduction to the Philosophy of Mathematics

An Introduction to the Philosophy of Mathematics

Author: Mark Colyvan

Publisher: Cambridge University Press

Published: 2012-06-14

Total Pages: 199

ISBN-13: 0521826020

DOWNLOAD EBOOK

A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.