MATHEMATICAL MODELS – Volume III

MATHEMATICAL MODELS – Volume III

Author: Jerzy A. Filar

Publisher: EOLSS Publications

Published: 2009-09-19

Total Pages: 398

ISBN-13: 1848262442

DOWNLOAD EBOOK

Mathematical Models is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Mathematical Models discusses matters of great relevance to our world such as: Basic Principles of Mathematical Modeling; Mathematical Models in Water Sciences; Mathematical Models in Energy Sciences; Mathematical Models of Climate and Global Change; Infiltration and Ponding; Mathematical Models of Biology; Mathematical Models in Medicine and Public Health; Mathematical Models of Society and Development. These three volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.


Guide to Mathematical Modelling

Guide to Mathematical Modelling

Author: David A Towers

Publisher: Bloomsbury Publishing

Published: 2020-06-06

Total Pages: 326

ISBN-13: 1352011271

DOWNLOAD EBOOK

A basic introduction to Mathematical Modelling, this book encourages the reader to participate in the investigation of a wide variety of modelling examples. These are carefully paced so that the readers can identify and develop the skills which are required for successful modelling. The examples also promote an appreciation of the enormous range of problems to which mathematical modelling skills can be usefully applied.


An Introduction to Mathematical Modeling

An Introduction to Mathematical Modeling

Author: Edward A. Bender

Publisher: Courier Corporation

Published: 2012-05-23

Total Pages: 273

ISBN-13: 0486137120

DOWNLOAD EBOOK

Employing a practical, "learn by doing" approach, this first-rate text fosters the development of the skills beyond the pure mathematics needed to set up and manipulate mathematical models. The author draws on a diversity of fields — including science, engineering, and operations research — to provide over 100 reality-based examples. Students learn from the examples by applying mathematical methods to formulate, analyze, and criticize models. Extensive documentation, consisting of over 150 references, supplements the models, encouraging further research on models of particular interest. The lively and accessible text requires only minimal scientific background. Designed for senior college or beginning graduate-level students, it assumes only elementary calculus and basic probability theory for the first part, and ordinary differential equations and continuous probability for the second section. All problems require students to study and create models, encouraging their active participation rather than a mechanical approach. Beyond the classroom, this volume will prove interesting and rewarding to anyone concerned with the development of mathematical models or the application of modeling to problem solving in a wide array of applications.


Mathematical Modelling Techniques

Mathematical Modelling Techniques

Author: Rutherford Aris

Publisher: Courier Corporation

Published: 1994-01-01

Total Pages: 300

ISBN-13: 9780486681313

DOWNLOAD EBOOK

"Engaging, elegantly written." — Applied Mathematical Modelling. A distinguished theoretical chemist and engineer discusses the types of models — finite, statistical, stochastic, and more — as well as how to formulate and manipulate them for best results. Filled with numerous examples, the book includes three appendices offering further examples treated in more detail.


The Nature of Mathematical Modeling

The Nature of Mathematical Modeling

Author: Neil A. Gershenfeld

Publisher: Cambridge University Press

Published: 1999

Total Pages: 268

ISBN-13: 9780521570954

DOWNLOAD EBOOK

This is a book about the nature of mathematical modeling, and about the kinds of techniques that are useful for modeling. The text is in four sections. The first covers exact and approximate analytical techniques; the second, numerical methods; the third, model inference based on observations; and the last, the special role of time in modeling. Each of the topics in the book would be the worthy subject of a dedicated text, but only by presenting the material in this way is it possible to make so much material accessible to so many people. Each chapter presents a concise summary of the core results in an area. The text is complemented by extensive worked problems.


A Primer on Mathematical Modelling

A Primer on Mathematical Modelling

Author: Alfio Quarteroni

Publisher: Springer Nature

Published: 2020-10-09

Total Pages: 238

ISBN-13: 3030445410

DOWNLOAD EBOOK

In this book we describe the magic world of mathematical models: starting from real-life problems, we formulate them in terms of equations, transform equations into algorithms and algorithms into programs to be executed on computers. A broad variety of examples and exercises illustrate that properly designed models can, e.g.: predict the way the number of dolphins in the Aeolian Sea will change as food availability and fishing activity vary; describe the blood flow in a capillary network; calculate the PageRank of websites. This book also includes a chapter with an elementary introduction to Octave, an open-source programming language widely used in the scientific community. Octave functions and scripts for dealing with the problems presented in the text can be downloaded from https://paola-gervasio.unibs.it/quarteroni-gervasio This book is addressed to any student interested in learning how to construct and apply mathematical models.


Mathematical Modeling

Mathematical Modeling

Author: Christof Eck

Publisher: Springer

Published: 2017-04-11

Total Pages: 519

ISBN-13: 3319551612

DOWNLOAD EBOOK

Mathematical models are the decisive tool to explain and predict phenomena in the natural and engineering sciences. With this book readers will learn to derive mathematical models which help to understand real world phenomena. At the same time a wealth of important examples for the abstract concepts treated in the curriculum of mathematics degrees are given. An essential feature of this book is that mathematical structures are used as an ordering principle and not the fields of application. Methods from linear algebra, analysis and the theory of ordinary and partial differential equations are thoroughly introduced and applied in the modeling process. Examples of applications in the fields electrical networks, chemical reaction dynamics, population dynamics, fluid dynamics, elasticity theory and crystal growth are treated comprehensively.