Mathematical Models of Retinal Development
Author: Erika Tatiana Camacho
Publisher:
Published: 2003
Total Pages: 280
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Erika Tatiana Camacho
Publisher:
Published: 2003
Total Pages: 280
ISBN-13:
DOWNLOAD EBOOKAuthor: Giovanna Guidoboni
Publisher: Springer Nature
Published: 2019-11-25
Total Pages: 606
ISBN-13: 3030258866
DOWNLOAD EBOOKThe chapters in this contributed volume showcase current theoretical approaches in the modeling of ocular fluid dynamics in health and disease. By including chapters written by experts from a variety of fields, this volume will help foster a genuinely collaborative spirit between clinical and research scientists. It vividly illustrates the advantages of clinical and experimental methods, data-driven modeling, and physically-based modeling, while also detailing the limitations of each approach. Blood, aqueous humor, vitreous humor, tear film, and cerebrospinal fluid each have a section dedicated to their anatomy and physiology, pathological conditions, imaging techniques, and mathematical modeling. Because each fluid receives a thorough analysis from experts in their respective fields, this volume stands out among the existing ophthalmology literature. Ocular Fluid Dynamics is ideal for current and future graduate students in applied mathematics and ophthalmology who wish to explore the field by investigating open questions, experimental technologies, and mathematical models. It will also be a valuable resource for researchers in mathematics, engineering, physics, computer science, chemistry, ophthalmology, and more.
Author: Sarah P. Otto
Publisher: Princeton University Press
Published: 2011-09-19
Total Pages: 745
ISBN-13: 1400840910
DOWNLOAD EBOOKThirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available
Author: Evelyne Sernagor
Publisher: Cambridge University Press
Published: 2012-11-29
Total Pages: 369
ISBN-13: 1139459732
DOWNLOAD EBOOKThis advanced text, first published in 2006, takes a developmental approach to the presentation of our understanding of how vertebrates construct a retina. Written by experts in the field, each of the seventeen chapters covers a specific step in the process, focusing on the underlying molecular, cellular, and physiological mechanisms. There is also a special section on emerging technologies, including genomics, zebrafish genetics, and stem cell biology that are starting to yield important insights into retinal development. Primarily aimed at professionals, both biologists and clinicians working with the retina, this book provides a concise view of vertebrate retinal development. Since the retina is 'an approachable part of the brain', this book will also be attractive to all neuroscientists interested in development, as processes required to build this exquisitely organized system are ultimately relevant to all other parts of the central nervous system.
Author: E. Y. K. Ng
Publisher: CRC Press
Published: 2012-06-05
Total Pages: 432
ISBN-13: 1439869936
DOWNLOAD EBOOKAdvanced image processing and mathematical modeling techniques are increasingly being used for the early diagnosis of eye diseases. A comprehensive review of the field, Human Eye Imaging and Modeling details the latest advances and analytical techniques in ocular imaging and modeling. The first part of the book looks at imaging of the fundus as well as infrared imaging. It begins by exploring developments in the analysis of fundus images, particularly for the diagnosis of diabetic retinopathy and glaucoma. It also reviews anterior segment imaging and reports on developments in ocular thermography, especially the use of thermal imaging as the basis of tear evaporimetry and dry eye diagnosis. The second part of the book delves into mathematical modeling of the human eye. Coverage includes modeling of the eye during retinal laser surgery, a framework for optical simulation, heat distribution using a 3D web-splines solution, and exposure to laser radiation. The text also examines computer simulation of the human eye based on principles of heat transfer, as well as various bioheat equations to predict interior temperatures based on the surface temperature. Featuring contributions by established experts in eye imaging, this is a valuable reference for medical personnel and researchers who want to know more about state-of-the-art computer-based imaging and detection methods. It presents novel imaging and modeling algorithms that can aid in early diagnosis, with the aim of enriching the lives of people suffering from eye abnormalities.
Author: Urszula Ledzewicz
Publisher: Springer Science & Business Media
Published: 2012-10-21
Total Pages: 426
ISBN-13: 1461441773
DOWNLOAD EBOOKMathematical biomedicine is a rapidly developing interdisciplinary field of research that connects the natural and exact sciences in an attempt to respond to the modeling and simulation challenges raised by biology and medicine. There exist a large number of mathematical methods and procedures that can be brought in to meet these challenges and this book presents a palette of such tools ranging from discrete cellular automata to cell population based models described by ordinary differential equations to nonlinear partial differential equations representing complex time- and space-dependent continuous processes. Both stochastic and deterministic methods are employed to analyze biological phenomena in various temporal and spatial settings. This book illustrates the breadth and depth of research opportunities that exist in the general field of mathematical biomedicine by highlighting some of the fascinating interactions that continue to develop between the mathematical and biomedical sciences. It consists of five parts that can be read independently, but are arranged to give the reader a broader picture of specific research topics and the mathematical tools that are being applied in its modeling and analysis. The main areas covered include immune system modeling, blood vessel dynamics, cancer modeling and treatment, and epidemiology. The chapters address topics that are at the forefront of current biomedical research such as cancer stem cells, immunodominance and viral epitopes, aggressive forms of brain cancer, or gene therapy. The presentations highlight how mathematical modeling can enhance biomedical understanding and will be of interest to both the mathematical and the biomedical communities including researchers already working in the field as well as those who might consider entering it. Much of the material is presented in a way that gives graduate students and young researchers a starting point for their own work.
Author: Ann E. Elsner
Publisher: Frontiers Media SA
Published: 2022-12-27
Total Pages: 131
ISBN-13: 2832509711
DOWNLOAD EBOOKAuthor: Arjen Van Ooyen
Publisher: MIT Press
Published: 2003
Total Pages: 348
ISBN-13: 0262220660
DOWNLOAD EBOOKAn important collection showing how computational and mathematical modeling can be used to study the complexities of neural development.
Author: Rubem P. Mondaini
Publisher: Springer Science & Business Media
Published: 2008-02-23
Total Pages: 305
ISBN-13: 3540767843
DOWNLOAD EBOOKThis volume is an interdisciplinary book which introduces, in a very readable way, state-of-the-art research in the fundamental topics of mathematical modelling of Biosystems. In short, the book offers an overview of mathematical and computational modelling of biosystems including biological phenomena in general. There is also a special introduction to Protein Physics which aims to explain the all-or-none first order phase transitions from native to denatured states.
Author: Jean Petitot
Publisher: Springer
Published: 2017-11-08
Total Pages: 388
ISBN-13: 3319655914
DOWNLOAD EBOOKThis book describes several mathematical models of the primary visual cortex, referring them to a vast ensemble of experimental data and putting forward an original geometrical model for its functional architecture, that is, the highly specific organization of its neural connections. The book spells out the geometrical algorithms implemented by this functional architecture, or put another way, the “neurogeometry” immanent in visual perception. Focusing on the neural origins of our spatial representations, it demonstrates three things: firstly, the way the visual neurons filter the optical signal is closely related to a wavelet analysis; secondly, the contact structure of the 1-jets of the curves in the plane (the retinal plane here) is implemented by the cortical functional architecture; and lastly, the visual algorithms for integrating contours from what may be rather incomplete sensory data can be modelled by the sub-Riemannian geometry associated with this contact structure. As such, it provides readers with the first systematic interpretation of a number of important neurophysiological observations in a well-defined mathematical framework. The book’s neuromathematical exploration appeals to graduate students and researchers in integrative-functional-cognitive neuroscience with a good mathematical background, as well as those in applied mathematics with an interest in neurophysiology.