Mathematical Models of Convection

Mathematical Models of Convection

Author: Victor K. Andreev

Publisher: Walter de Gruyter

Published: 2012-07-30

Total Pages: 436

ISBN-13: 3110258595

DOWNLOAD EBOOK

Phenomena of convection are abundant in nature as well as in industry. This volume addresses the subject of convection from the point of view of both, theory and application. While the first three chapters provide a refresher on fluid dynamics and heat transfer theory, the rest of the book describes the modern developments in theory. Thus it brings the reader to the "front" of the modern research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fields.


Mathematical Models of Convection

Mathematical Models of Convection

Author: Victor K. Andreev

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-08-24

Total Pages: 334

ISBN-13: 311065394X

DOWNLOAD EBOOK

The revised edition gives a comprehensive mathematical and physical presentation of fluid flows in non-classical models of convection - relevant in nature as well as in industry. After the concise coverage of fluid dynamics and heat transfer theory it discusses recent research. This monograph provides the theoretical foundation on a topic relevant to metallurgy, ecology, meteorology, geo-and astrophysics, aerospace industry, chemistry, crystal physics, and many other fields.


Convection in Fluids

Convection in Fluids

Author: Radyadour Kh. Zeytounian

Publisher: Springer Science & Business Media

Published: 2009-07-21

Total Pages: 396

ISBN-13: 9048124336

DOWNLOAD EBOOK

This monograph, entirely devoted to “Convection in Fluids”, presents a unified rational approach of various convective phenomena in fluids (mainly considered as a thermally perfect gas or an expansible liquid), where the main driving mechanism is the buoyancy force (Archimedean thrust) or temperature-dependent surface tension in homogeneities (Marangoni effect). Also, the general mathematical formulation (for instance, in the Bénard problem - heated from below) and the effect of free surface deformation are taken into account. In the case of atmospheric thermal convection, the Coriolis force and stratification effects are also considered. This volume gives a rational and analytical analysis of the above mentioned physical effects on the basis of the full unsteady Navier-Stokes and Fourier (NS-F) equations - for a Newtonian compressible viscous and heat-conducting fluid - coupled with the associated initials (at initial time), boundary (lower-at the solid plane) and free surface (upper-in contact with ambiant air) conditions. This, obviously, is not an easy but a necessary task if we have in mind a rational modelling process, and work within a numerically coherent simulation on a high speed computer.


Mathematical Modeling Of Melting And Freezing Processes

Mathematical Modeling Of Melting And Freezing Processes

Author: V. Alexiades

Publisher: Routledge

Published: 2018-05-02

Total Pages: 340

ISBN-13: 1351433288

DOWNLOAD EBOOK

This reference book presents mathematical models of melting and solidification processes that are the key to the effective performance of latent heat thermal energy storage systems (LHTES), utilized in a wide range of heat transfer and industrial applications. This topic has spurred a growth in research into LHTES applications in energy conservation and utilization, space station power systems, and thermal protection of electronic equipment in hostile environments. Further, interest in mathematical modeling has increased with the speread of high powered computers used in most industrial and academic settings. In two sections, the book first describes modeling of phase change processes and then describes applications for LHTES. It is aimed at graduate students, researchers, and practicing engineers in heat transfer, materials processing, multiphase systems, energy conservation, metallurgy, microelectronics, and cryosurgery.


Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine

Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine

Author: Abram S. Dorfman

Publisher: John Wiley & Sons

Published: 2017-02-06

Total Pages: 458

ISBN-13: 1119320569

DOWNLOAD EBOOK

Applications of mathematical heat transfer and fluid flow models in engineering and medicine Abram S. Dorfman, University of Michigan, USA Engineering and medical applications of cutting-edge heat and flow models This book presents innovative efficient methods in fluid flow and heat transfer developed and widely used over the last fifty years. The analysis is focused on mathematical models which are an essential part of any research effort as they demonstrate the validity of the results obtained. The universality of mathematics allows consideration of engineering and biological problems from one point of view using similar models. In this book, the current situation of applications of modern mathematical models is outlined in three parts. Part I offers in depth coverage of the applications of contemporary conjugate heat transfer models in various industrial and technological processes, from aerospace and nuclear reactors to drying and food processing. In Part II the theory and application of two recently developed models in fluid flow are considered: the similar conjugate model for simulation of biological systems, including flows in human organs, and applications of the latest developments in turbulence simulation by direct solution of Navier-Stokes equations, including flows around aircraft. Part III proposes fundamentals of laminar and turbulent flows and applied mathematics methods. The discussion is complimented by 365 examples selected from a list of 448 cited papers, 239 exercises and 136 commentaries. Key features: Peristaltic flows in normal and pathologic human organs. Modeling flows around aircraft at high Reynolds numbers. Special mathematical exercises allow the reader to complete expressions derivation following directions from the text. Procedure for preliminary choice between conjugate and common simple methods for particular problem solutions. Criterions of conjugation, definition of semi-conjugate solutions. This book is an ideal reference for graduate and post-graduate students and engineers.


Introduction to Modeling Convection in Planets and Stars

Introduction to Modeling Convection in Planets and Stars

Author: Gary A. Glatzmaier

Publisher: Princeton University Press

Published: 2013-11-24

Total Pages: 343

ISBN-13: 1400848903

DOWNLOAD EBOOK

This book provides readers with the skills they need to write computer codes that simulate convection, internal gravity waves, and magnetic field generation in the interiors and atmospheres of rotating planets and stars. Using a teaching method perfected in the classroom, Gary Glatzmaier begins by offering a step-by-step guide on how to design codes for simulating nonlinear time-dependent thermal convection in a two-dimensional box using Fourier expansions in the horizontal direction and finite differences in the vertical direction. He then describes how to implement more efficient and accurate numerical methods and more realistic geometries in two and three dimensions. In the third part of the book, Glatzmaier demonstrates how to incorporate more sophisticated physics, including the effects of magnetic field, density stratification, and rotation. Featuring numerous exercises throughout, this is an ideal textbook for students and an essential resource for researchers. Describes how to create codes that simulate the internal dynamics of planets and stars Builds on basic concepts and simple methods Shows how to improve the efficiency and accuracy of the numerical methods Describes more relevant geometries and boundary conditions Demonstrates how to incorporate more sophisticated physics


Heat Conduction

Heat Conduction

Author: Liqiu Wang

Publisher: Springer Science & Business Media

Published: 2007-12-20

Total Pages: 524

ISBN-13: 3540743030

DOWNLOAD EBOOK

Many phenomena in social, natural and engineering fields are governed by wave, potential, parabolic heat-conduction, hyperbolic heat-conduction and dual-phase-lagging heat-conduction equations. This monograph examines these equations: their solution structures, methods of finding their solutions under various supplementary conditions, as well as the physical implication and applications of their solutions.


Mathematical Models for Poroelastic Flows

Mathematical Models for Poroelastic Flows

Author: Anvarbek Meirmanov

Publisher: Springer Science & Business Media

Published: 2013-11-29

Total Pages: 477

ISBN-13: 9462390150

DOWNLOAD EBOOK

The book is devoted to rigorous derivation of macroscopic mathematical models as a homogenization of exact mathematical models at the microscopic level. The idea is quite natural: one first must describe the joint motion of the elastic skeleton and the fluid in pores at the microscopic level by means of classical continuum mechanics, and then use homogenization to find appropriate approximation models (homogenized equations). The Navier-Stokes equations still hold at this scale of the pore size in the order of 5 – 15 microns. Thus, as we have mentioned above, the macroscopic mathematical models obtained are still within the limits of physical applicability. These mathematical models describe different physical processes of liquid filtration and acoustics in poroelastic media, such as isothermal or non-isothermal filtration, hydraulic shock, isothermal or non-isothermal acoustics, diffusion-convection, filtration and acoustics in composite media or in porous fractured reservoirs. Our research is based upon the Nguetseng two-scale convergent method.