Mathematical Modelling with Case Studies: Using Maple and MATLAB, Third Edition provides students with hands-on modelling skills for a wide variety of problems involving differential equations that describe rates of change. While the book focuses on growth and decay processes, interacting populations, and heating/cooling problems, the mathematical
Over the past decade there has been an increasing demand for suitable material in the area of mathematical modelling as applied to science, engineering, business and management. Recent developments in computer technology and related software have provided the necessary tools of increasing power and sophistication which have significant implications for the use and role of mathematical modelling in the above disciplines. In the past, traditional methods have relied heavily on expensive experimentation and the building of scaled models, but now a more flexible and cost effective approach is available through greater use of mathematical modelling and computer simulation. In particular, developments in computer algebra, symbolic manipulation packages and user friendly software packages for large scale problems, all have important implications in both the teaching of mathematical modelling and, more importantly, its use in the solution of real world problems. Many textbooks have been published which cover the art and techniques of modelling as well as specific mathematical modelling techniques in specialist areas within science and business. In most of these books the mathematical material tends to be rather tailor made to fit in with a one or two semester course for teaching students at the undergraduate or postgraduate level, usually the former. This textbook is quite different in that it is intended to build on and enhance students’ modelling skills using a combination of case studies and projects.
"This is an ideal text for classes on modelling. It can also be used in seminars or as preparation for mathematical modelling competitions."--BOOK JACKET.
Exploring Mathematical Modeling in Biology through Case Studies and Experimental Activities provides supporting materials for courses taken by students majoring in mathematics, computer science or in the life sciences. The book's cases and lab exercises focus on hypothesis testing and model development in the context of real data. The supporting mathematical, coding and biological background permit readers to explore a problem, understand assumptions, and the meaning of their results. The experiential components provide hands-on learning both in the lab and on the computer. As a beginning text in modeling, readers will learn to value the approach and apply competencies in other settings. Included case studies focus on building a model to solve a particular biological problem from concept and translation into a mathematical form, to validating the parameters, testing the quality of the model and finally interpreting the outcome in biological terms. The book also shows how particular mathematical approaches are adapted to a variety of problems at multiple biological scales. Finally, the labs bring the biological problems and the practical issues of collecting data to actually test the model and/or adapting the mathematics to the data that can be collected.
Focusing on growth and decay processes, interacting populations, and heating/cooling problems, Mathematical Modelling with Case Studies: A Differential Equations Approach using Maple and MATLAB, Second Edition presents mathematical techniques applicable to models involving differential equations that describe rates of change. Although the authors
This book demonstrates how mathematical models constructed in system dynamics modelling platforms, such as Vensim, can be used for long-term management of environmental change. It is divided into two sections, with the first dedicated to theory, where the theory of co-evolutionary modelling and its use in the system dynamics model platform is developed. The book takes readers through the steps in the modelling process, different validation tools applicable to these types of models and different growth specification, as well as how to curve fit using numerical methods in Vensim. Section 2 comprises of a collection of applied case studies, including fisheries, game theory and wildlife management. The book concludes with lessons from the use of co-evolutionary models for long-term natural resource management. The book will be of great interest to students and scholars of environmental economics, natural resource management, system dynamics, ecological modelling and bioeconomics.
Mathematical Modeling: Models, Analysis and Applications, Second Edition introduces models of both discrete and continuous systems. This book is aimed at newcomers who desires to learn mathematical modeling, especially students taking a first course in the subject. Beginning with the step-by-step guidance of model formulation, this book equips the reader about modeling with difference equations (discrete models), ODE’s, PDE’s, delay and stochastic differential equations (continuous models). This book provides interdisciplinary and integrative overview of mathematical modeling, making it a complete textbook for a wide audience. A unique feature of the book is the breadth of coverage of different examples on mathematical modelling, which include population models, economic models, arms race models, combat models, learning model, alcohol dynamics model, carbon dating, drug distribution models, mechanical oscillation models, epidemic models, tumor models, traffic flow models, crime flow models, spatial models, football team performance model, breathing model, two neuron system model, zombie model and model on love affairs. Common themes such as equilibrium points, stability, phase plane analysis, bifurcations, limit cycles, period doubling and chaos run through several chapters and their interpretations in the context of the model have been highlighted. In chapter 3, a section on estimation of system parameters with real life data for model validation has also been discussed. Features Covers discrete, continuous, spatial, delayed and stochastic models. Over 250 illustrations, 300 examples and exercises with complete solutions. Incorporates MATHEMATICA® and MATLAB®, each chapter contains Mathematica and Matlab codes used to display numerical results (available at CRC website). Separate sections for Projects. Several exercise problems can also be used for projects. Presents real life examples of discrete and continuous scenarios. The book is ideal for an introductory course for undergraduate and graduate students, engineers, applied mathematicians and researchers working in various areas of natural and applied sciences.
This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.