Presents mathematical models of melting and solidification processes that are the key to the effective performance of latent heat thermal energy storage systems, utilized in a wide range of heat transfer and industrial applications.
This reference book presents mathematical models of melting and solidification processes that are the key to the effective performance of latent heat thermal energy storage systems (LHTES), utilized in a wide range of heat transfer and industrial applications. This topic has spurred a growth in research into LHTES applications in energy conservation and utilization, space station power systems, and thermal protection of electronic equipment in hostile environments. Further, interest in mathematical modeling has increased with the speread of high powered computers used in most industrial and academic settings. In two sections, the book first describes modeling of phase change processes and then describes applications for LHTES. It is aimed at graduate students, researchers, and practicing engineers in heat transfer, materials processing, multiphase systems, energy conservation, metallurgy, microelectronics, and cryosurgery.
This reference book presents mathematical models of melting and solidification processes that are the key to the effective performance of latent heat thermal energy storage systems (LHTES), utilized in a wide range of heat transfer and industrial applications. This topic has spurred a growth in research into LHTES applications in energy conservation and utilization, space station power systems, and thermal protection of electronic equipment in hostile environments. Further, interest in mathematical modeling has increased with the speread of high powered computers used in most industrial and academic settings. In two sections, the book first describes modeling of phase change processes and then describes applications for LHTES. It is aimed at graduate students, researchers, and practicing engineers in heat transfer, materials processing, multiphase systems, energy conservation, metallurgy, microelectronics, and cryosurgery.
This book presents new research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. It includes heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimisation; finite volume, finite element, and boundary element procedures; decision sciences in an industrial and manufacturing context; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
“Principles of Solidification” offers comprehensive descriptions of liquid-to-solid transitions encountered in shaped casting, welding, and non-biological bulk crystal growth processes. The book logically develops through careful presentation of relevant thermodynamic and kinetic theories and models of solidification occurring in a variety of materials. Major topics encompass the liquid-state, liquid-solid transformations, chemical macro- and microsegregation, purification by fractional crystallization and zone refining, solid-liquid interfaces, polyphase freezing, and rapid solidification processing. Solid-liquid interfaces are discussed quantitatively both as sharp and diffuse entities, with supporting differential geometric descriptions. The book offers: • Detailed mathematical examples throughout to guide readers • Applications of solidification and crystal growth methodologies for preparation and purification of metals, ceramics, polymers and semiconductors • Appendices providing supporting information on special topics covered in the chapters. Readers in materials, metallurgical, chemical, and mechanical engineering will find this to be a useful source on the subjects of solidification and crystal growth. Chemists, physicists, and geologists concerned with melting/freezing phenomena will also find much of value in this book.
Approx.460 pages - Thoroughly explores novel applications of low-temperature unit operations in food industries - Brings innovative freezing technologies - Clarifies phase change of water, freezing processes, mass and heat transfer phenomena
This book addresses mathematics in a wide variety of applications, ranging from problems in electronics, energy and the environment, to mechanics and mechatronics. Using the classification system defined in the EU Framework Programme for Research and Innovation H2020, several of the topics covered belong to the challenge climate action, environment, resource efficiency and raw materials; and some to health, demographic change and wellbeing; while others belong to Europe in a changing world – inclusive, innovative and reflective societies. The 19th European Conference on Mathematics for Industry, ECMI2016, was held in Santiago de Compostela, Spain in June 2016. The proceedings of this conference include the plenary lectures, ECMI awards and special lectures, mini-symposia (including the description of each mini-symposium) and contributed talks. The ECMI conferences are organized by the European Consortium for Mathematics in Industry with the aim of promoting interaction between academy and industry, leading to innovation in both fields and providing unique opportunities to discuss the latest ideas, problems and methodologies, and contributing to the advancement of science and technology. They also encourage industrial sectors to propose challenging problems where mathematicians can provide insights and fresh perspectives. Lastly, the ECMI conferences are one of the main forums in which significant advances in industrial mathematics are presented, bringing together prominent figures from business, science and academia to promote the use of innovative mathematics in industry.
The second edition of this standard-setting handbook provides and all-encompassing reference for the practicing engineer in industry, government, and academia, with relevant background and up-to-date information on the most important topics of modern mechanical engineering. These topics include modern manufacturing and design, robotics, computer engineering, environmental engineering, economics, patent law, and communication/information systems. The final chapter and appendix provide information regarding physical properties and mathematical and computational methods. New topics include nanotechnology, MEMS, electronic packaging, global climate change, electric and hybrid vehicles, and bioengineering.
Additive manufacturing (AM) is one of the manufacturing processes that warrants the attention of industrialists, researchers, and scientists. AM has the ability to fabricate materials to produce parts with complex shapes without any theoretical restrictions combined with added functionalities. Selective laser melting (SLM), also known as laser-based powder bed processing (LPBF), is one of the main AM process that can be used to fabricate wide variety of materials that are Al-, Ti-, Fe-, Ni-, Co-, W-, Ag-, and Au-based, etc. However, several challenges need to be addressed systematically, such as development of new materials that suit the SLM process conditions so the process capabilities can be fully used to produce new properties in these materials. Other issues in the field are the lack of microstructure–property correlations, premature failure, etc. Accordingly, this Special Issue (book) focuses mainly on the microstructure-correlation in three different alloys: AlSi10Mg, Ti6Al4V, and 304L stainless steel, where six articles are presented. Hence, this Special Issue outlines microstructure–property correlations in the SLM processed materials and provides a value addition to the field of AM.
This book is unique in its in-depth coverage of heat transfer and fluid mechanics including numerical and computer methods, applications, thermodynamics and fluid mechanics. It will serve as a comprehensive resource for professional engineers well into the new millennium. Some of the material will be drawn from the "Handbook of Mechanical Engineering," but with expanded information in such areas as compressible flow and pumps, conduction, and desalination.