Mathematical Modeling of Biological Processes

Mathematical Modeling of Biological Processes

Author: Avner Friedman

Publisher: Springer

Published: 2014-09-19

Total Pages: 152

ISBN-13: 3319083147

DOWNLOAD EBOOK

This book on mathematical modeling of biological processes includes a wide selection of biological topics that demonstrate the power of mathematics and computational codes in setting up biological processes with a rigorous and predictive framework. Topics include: enzyme dynamics, spread of disease, harvesting bacteria, competition among live species, neuronal oscillations, transport of neurofilaments in axon, cancer and cancer therapy, and granulomas. Complete with a description of the biological background and biological question that requires the use of mathematics, this book is developed for graduate students and advanced undergraduate students with only basic knowledge of ordinary differential equations and partial differential equations; background in biology is not required. Students will gain knowledge on how to program with MATLAB without previous programming experience and how to use codes in order to test biological hypothesis.


Mathematical and Experimental Modeling of Physical and Biological Processes

Mathematical and Experimental Modeling of Physical and Biological Processes

Author: H.T. Banks

Publisher: CRC Press

Published: 2009-01-12

Total Pages: 298

ISBN-13: 9781420073386

DOWNLOAD EBOOK

Through several case study problems from industrial and scientific research laboratory applications, Mathematical and Experimental Modeling of Physical and Biological Processes provides students with a fundamental understanding of how mathematics is applied to problems in science and engineering. For each case study problem, the authors discuss why a model is needed and what goals can be achieved with the model. Exploring what mathematics can reveal about applications, the book focuses on the design of appropriate experiments to validate the development of mathematical models. It guides students through the modeling process, from empirical observations and formalization of properties to model analysis and interpretation of results. The authors also describe the hardware and software tools used to design the experiments so faculty/students can duplicate them. Integrating real-world applications into the traditional mathematics curriculum, this textbook deals with the formulation and analysis of mathematical models in science and engineering. It gives students an appreciation of the use of mathematics and encourages them to further study the applied topics. Real experimental data for projects can be downloaded from CRC Press Online.


A Course in Mathematical Biology

A Course in Mathematical Biology

Author: Gerda de Vries

Publisher: SIAM

Published: 2006-07-01

Total Pages: 307

ISBN-13: 0898718252

DOWNLOAD EBOOK

This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.


Methods and Models in Mathematical Biology

Methods and Models in Mathematical Biology

Author: Johannes Müller

Publisher: Springer

Published: 2015-08-13

Total Pages: 721

ISBN-13: 3642272517

DOWNLOAD EBOOK

This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.


Mathematical Models in Biology

Mathematical Models in Biology

Author: Leah Edelstein-Keshet

Publisher: SIAM

Published: 1988-01-01

Total Pages: 629

ISBN-13: 9780898719147

DOWNLOAD EBOOK

Mathematical Models in Biology is an introductory book for readers interested in biological applications of mathematics and modeling in biology. A favorite in the mathematical biology community, it shows how relatively simple mathematics can be applied to a variety of models to draw interesting conclusions. Connections are made between diverse biological examples linked by common mathematical themes. A variety of discrete and continuous ordinary and partial differential equation models are explored. Although great advances have taken place in many of the topics covered, the simple lessons contained in this book are still important and informative. Audience: the book does not assume too much background knowledge--essentially some calculus and high-school algebra. It was originally written with third- and fourth-year undergraduate mathematical-biology majors in mind; however, it was picked up by beginning graduate students as well as researchers in math (and some in biology) who wanted to learn about this field.


Introduction to Mathematical Biology

Introduction to Mathematical Biology

Author: Ching Shan Chou

Publisher: Springer

Published: 2016-04-27

Total Pages: 174

ISBN-13: 3319296388

DOWNLOAD EBOOK

This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of atherosclerosis associated with high cholesterol levels, cancer and immune interactions, cancer therapy, and tuberculosis. Readers will experience how mathematical models and their numerical simulations can provide explanations that guide biological and biomedical research. Considered to be the undergraduate companion to the more advanced book "Mathematical Modeling of Biological Processes" (A. Friedman, C.-Y. Kao, Springer – 2014), this book is geared towards undergraduate students with little background in mathematics and no biological background.


Mathematical Modeling of Biological Systems

Mathematical Modeling of Biological Systems

Author: Harvey J. Gold

Publisher: John Wiley & Sons

Published: 1977

Total Pages: 392

ISBN-13:

DOWNLOAD EBOOK

The modeling process - an overview. Dimension and similarity. Probability models. Dynamic processes. Interacting dynamic processes. Feedback control and stability of biological systems. Curve fiting: estimating the parameters. Computing.


Systems Biology

Systems Biology

Author: Andreas Kremling

Publisher: CRC Press

Published: 2013-11-12

Total Pages: 382

ISBN-13: 1466567899

DOWNLOAD EBOOK

Drawing on the latest research in the field, Systems Biology: Mathematical Modeling and Model Analysis presents many methods for modeling and analyzing biological systems, in particular cellular systems. It shows how to use predictive mathematical models to acquire and analyze knowledge about cellular systems. It also explores how the models are systematically applied in biotechnology. The first part of the book introduces biological basics, such as metabolism, signaling, gene expression, and control as well as mathematical modeling fundamentals, including deterministic models and thermodynamics. The text also discusses linear regression methods, explains the differences between linear and nonlinear regression, and illustrates how to determine input variables to improve estimation accuracy during experimental design. The second part covers intracellular processes, including enzymatic reactions, polymerization processes, and signal transduction. The author highlights the process–function–behavior sequence in cells and shows how modeling and analysis of signal transduction units play a mediating role between process and function. The third part presents theoretical methods that address the dynamics of subsystems and the behavior near a steady state. It covers techniques for determining different time scales, sensitivity analysis, structural kinetic modeling, and theoretical control engineering aspects, including a method for robust control. It also explores frequent patterns (motifs) in biochemical networks, such as the feed-forward loop in the transcriptional network of E. coli. Moving on to models that describe a large number of individual reactions, the last part looks at how these cellular models are used in biotechnology. The book also explains how graphs can illustrate the link between two components in large networks with several interactions.


Mathematical Modeling in Systems Biology

Mathematical Modeling in Systems Biology

Author: Brian P. Ingalls

Publisher: MIT Press

Published: 2022-06-07

Total Pages: 423

ISBN-13: 0262545829

DOWNLOAD EBOOK

An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.


A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

A Biologist's Guide to Mathematical Modeling in Ecology and Evolution

Author: Sarah P. Otto

Publisher: Princeton University Press

Published: 2011-09-19

Total Pages: 745

ISBN-13: 1400840910

DOWNLOAD EBOOK

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available