Mathematical Methods in Science and Engineering

Mathematical Methods in Science and Engineering

Author: Masud Mansuripur

Publisher:

Published: 2019-10-15

Total Pages: 348

ISBN-13: 9781516577088

DOWNLOAD EBOOK

Mathematical Methods in Science and Engineering: Applications in Optics and Photonics helps students build a conceptual appreciation for critical mathematical methods, as well as the physical feel and intuition for select mathematical ideas. Throughout the text, examples are provided from the field of optics and photonics to clarify key concepts. The book features 13 targeted chapters that begin with a brief introduction to the topical area and then dive direc


Mathematical Methods in the Physical Sciences

Mathematical Methods in the Physical Sciences

Author: Mary L. Boas

Publisher: John Wiley & Sons

Published: 2006

Total Pages: 868

ISBN-13: 9788126508105

DOWNLOAD EBOOK

Market_Desc: · Physicists and Engineers· Students in Physics and Engineering Special Features: · Covers everything from Linear Algebra, Calculus, Analysis, Probability and Statistics, to ODE, PDE, Transforms and more· Emphasizes intuition and computational abilities· Expands the material on DE and multiple integrals· Focuses on the applied side, exploring material that is relevant to physics and engineering· Explains each concept in clear, easy-to-understand steps About The Book: The book provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference. This book helps readers gain a solid foundation in the many areas of mathematical methods in order to achieve a basic competence in advanced physics, chemistry, and engineering.


Mathematical Methods in Physics and Engineering with Mathematica

Mathematical Methods in Physics and Engineering with Mathematica

Author: Ferdinand F. Cap

Publisher: CRC Press

Published: 2003-05-28

Total Pages: 349

ISBN-13: 0203502604

DOWNLOAD EBOOK

More than ever before, complicated mathematical procedures are integral to the success and advancement of technology, engineering, and even industrial production. Knowledge of and experience with these procedures is therefore vital to present and future scientists, engineers and technologists. Mathematical Methods in Physics and Engineering


Mathematical Techniques

Mathematical Techniques

Author: Dominic William Jordan

Publisher: Oxford University Press, USA

Published: 1997

Total Pages: 788

ISBN-13: 9780198564614

DOWNLOAD EBOOK

All students of engineering, science, and mathematics take courses on mathematical techniques or `methods', and large numbers of these students are insecure in their mathematical grounding. This book offers a course in mathematical methods for students in the first stages of a science or engineering degree. Its particular intention is to cover the range of topics typically required, while providing for students whose mathematical background is minimal. The topics covered are: * Analytic geometry, vector algebra, vector fields (div and curl), differentiation, and integration. * Complex numbers, matrix operations, and linear systems of equations. * Differential equations and first-order linear systems, functions of more than one variable, double integrals, and line integrals. * Laplace transforms and Fourier series and Fourier transforms. * Probability and statistics. The earlier part of this list consists largely of what is thought pre-university material. However, many science students have not studied mathematics to this level, and among those that have the content is frequently only patchily understood. Mathematical Techniques begins at an elementary level but proceeds to give more advanced material with a minimum of manipulative complication. Most of the concepts can be explained using quite simple examples, and to aid understanding a large number of fully worked examples is included. As far as is possible chapter topics are dealt with in a self-contained way so that a student only needing to master certain techniques can omit others without trouble. The widely illustrated text also includes simple numerical processes which lead to examples and projects for computation, and a large number of exercises (with answers) is included to reinforce understanding.


Building and Solving Mathematical Programming Models in Engineering and Science

Building and Solving Mathematical Programming Models in Engineering and Science

Author: Enrique Castillo

Publisher: John Wiley & Sons

Published: 2011-10-24

Total Pages: 568

ISBN-13: 0471461652

DOWNLOAD EBOOK

Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems-clearly showing the connection between physical and mathematical realities-while also describing and exploring the main concepts and tools at work. This highly computational coverage includes: * Discussion and implementation of the GAMS programming system * Unique coverage of compatibility * Illustrative examples that showcase the connection between model and reality * Practical problems covering a wide range of scientific disciplines, as well as hundreds of examples and end-of-chapter exercises * Real-world applications to probability and statistics, electrical engineering, transportation systems, and more Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering.


Introduction to Mathematical Methods for Environmental Engineers and Scientists

Introduction to Mathematical Methods for Environmental Engineers and Scientists

Author: Charles Prochaska

Publisher: John Wiley & Sons

Published: 2018-05-31

Total Pages: 511

ISBN-13: 1119364140

DOWNLOAD EBOOK

The authors' aim is to offer the reader the fundamentals of numerous mathematical methods with accompanying practical environmental applications. The material in this book addresses mathematical calculations common to both the environmental science and engineering professionals. It provides the reader with nearly 100 solved illustrative examples and the interrelationship between both theory and applications is emphasized in nearly all of the 35 chapters. One key feature of this book is that the solutions to the problems are presented in a stand-alone manner. Throughout the book, the illustrative examples are laid out in such a way as to develop the reader's technical understanding of the subject in question, with more difficult examples located at or near the end of each set. In presenting the text material, the authors have stressed the pragmatic approach in the application of mathematical tools to assist the reader in grasping the role of mathematical skills in environmental problem-solving situations. The book is divided up into 5 parts: Introduction; Analytical Analysis; Numerical Analysis; Statistical Analysis; and Optimization. The analytical analysis includes graphical, trial-and-error, search, etc. methods. The numerical analysis includes integration, differentiation, differential equation, Monte Carlo, etc. The statistical analysis includes probability, probability distribution, decision trees, regression analysis, etc. Optimization includes both traditional approaches and linear programming.


Decomposition Techniques in Mathematical Programming

Decomposition Techniques in Mathematical Programming

Author: Antonio J. Conejo

Publisher: Springer Science & Business Media

Published: 2006-04-28

Total Pages: 542

ISBN-13: 3540276866

DOWNLOAD EBOOK

Optimization plainly dominates the design, planning, operation, and c- trol of engineering systems. This is a book on optimization that considers particular cases of optimization problems, those with a decomposable str- ture that can be advantageously exploited. Those decomposable optimization problems are ubiquitous in engineering and science applications. The book considers problems with both complicating constraints and complicating va- ables, and analyzes linear and nonlinear problems, with and without in- ger variables. The decomposition techniques analyzed include Dantzig-Wolfe, Benders, Lagrangian relaxation, Augmented Lagrangian decomposition, and others. Heuristic techniques are also considered. Additionally, a comprehensive sensitivity analysis for characterizing the solution of optimization problems is carried out. This material is particularly novel and of high practical interest. This book is built based on many clarifying, illustrative, and compu- tional examples, which facilitate the learning procedure. For the sake of cl- ity, theoretical concepts and computational algorithms are assembled based on these examples. The results are simplicity, clarity, and easy-learning. We feel that this book is needed by the engineering community that has to tackle complex optimization problems, particularly by practitioners and researchersinEngineering,OperationsResearch,andAppliedEconomics.The descriptions of most decomposition techniques are available only in complex and specialized mathematical journals, di?cult to understand by engineers. A book describing a wide range of decomposition techniques, emphasizing problem-solving, and appropriately blending theory and application, was not previously available.


Applied Mathematics for Science and Engineering

Applied Mathematics for Science and Engineering

Author: Larry A. Glasgow

Publisher: John Wiley & Sons

Published: 2014-07-24

Total Pages: 256

ISBN-13: 1118749839

DOWNLOAD EBOOK

Prepare students for success in using applied mathematics for engineering practice and post-graduate studies Moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade’s worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters