Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering

Author: Mattias Blennow

Publisher: CRC Press

Published: 2018-01-03

Total Pages: 749

ISBN-13: 1351676075

DOWNLOAD EBOOK

Suitable for advanced undergraduate and graduate students, this new textbook contains an introduction to the mathematical concepts used in physics and engineering. The entire book is unique in that it draws upon applications from physics, rather than mathematical examples, to ensure students are fully equipped with the tools they need. This approach prepares the reader for advanced topics, such as quantum mechanics and general relativity, while offering examples, problems, and insights into classical physics. The book is also distinctive in the coverage it devotes to modelling, and to oft-neglected topics such as Green's functions.


Advanced Mathematical Methods for Scientists and Engineers I

Advanced Mathematical Methods for Scientists and Engineers I

Author: Carl M. Bender

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 605

ISBN-13: 1475730691

DOWNLOAD EBOOK

A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.


Mathematical Methods for Physicists and Engineers

Mathematical Methods for Physicists and Engineers

Author: Royal Eugene Collins

Publisher: Courier Corporation

Published: 2012-06-11

Total Pages: 404

ISBN-13: 0486150127

DOWNLOAD EBOOK

Practical text focuses on fundamental applied math needed to deal with physics and engineering problems: elementary vector calculus, special functions of mathematical physics, calculus of variations, much more. 1968 edition.


Mathematical Methods for Scientists and Engineers

Mathematical Methods for Scientists and Engineers

Author: Donald Allan McQuarrie

Publisher: University Science Books

Published: 2003

Total Pages: 1188

ISBN-13: 9781891389245

DOWNLOAD EBOOK

"Intended for upper-level undergraduate and graduate courses in chemistry, physics, math and engineering, this book will also become a must-have for the personal library of all advanced students in the physical sciences. Comprised of more than 2000 problems and 700 worked examples that detail every single step, this text is exceptionally well adapted for self study as well as for course use."--From publisher description.


Mathematical Methods in Physics and Engineering

Mathematical Methods in Physics and Engineering

Author: John W. Dettman

Publisher: Courier Corporation

Published: 2013-01-23

Total Pages: 450

ISBN-13: 0486169367

DOWNLOAD EBOOK

Intended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For this second revised edition, Professor Dettman included a new section on generalized functions to help explain the use of the Dirac delta function in connection with Green's functions. In addition, a new approach to series solutions of ordinary differential equations has made the treatment independent of complex variable theory. This means that the first six chapters can be grasped without prior knowledge of complex variables. However, since Chapter 8 depends heavily on analytic functions of a complex variable, a new Chapter 7 on analytic function theory has been written.


Mathematical Methods for Physicists

Mathematical Methods for Physicists

Author: George Brown Arfken

Publisher: Academic Press

Published: 2013

Total Pages: 1230

ISBN-13: 0123846544

DOWNLOAD EBOOK

Table of Contents Mathematical Preliminaries Determinants and Matrices Vector Analysis Tensors and Differential Forms Vector Spaces Eigenvalue Problems Ordinary Differential Equations Partial Differential Equations Green's Functions Complex Variable Theory Further Topics in Analysis Gamma Function Bessel Functions Legendre Functions Angular Momentum Group Theory More Special Functions Fourier Series Integral Transforms Periodic Systems Integral Equations Mathieu Functions Calculus of Variations Probability and Statistics.


Mathematical Methods in Engineering and Physics

Mathematical Methods in Engineering and Physics

Author: Gary N. Felder

Publisher: John Wiley & Sons

Published: 2015-04-13

Total Pages: 829

ISBN-13: 1118449606

DOWNLOAD EBOOK

This text is intended for the undergraduate course in math methods, with an audience of physics and engineering majors. As a required course in most departments, the text relies heavily on explained examples, real-world applications and student engagement. Supporting the use of active learning, a strong focus is placed upon physical motivation combined with a versatile coverage of topics that can be used as a reference after students complete the course. Each chapter begins with an overview that includes a list of prerequisite knowledge, a list of skills that will be covered in the chapter, and an outline of the sections. Next comes the motivating exercise, which steps the students through a real-world physical problem that requires the techniques taught in each chapter.


A Course in Mathematical Methods for Physicists

A Course in Mathematical Methods for Physicists

Author: Russell L. Herman

Publisher: CRC Press

Published: 2013-12-04

Total Pages: 776

ISBN-13: 1000687260

DOWNLOAD EBOOK

Based on the author's junior-level undergraduate course, this introductory textbook is designed for a course in mathematical physics. Focusing on the physics of oscillations and waves, A Course in Mathematical Methods for Physicists helps students understand the mathematical techniques needed for their future studies in physics. It takes a bottom-u