Mathematical Foundations of Quantum Mechanics

Mathematical Foundations of Quantum Mechanics

Author: John von Neumann

Publisher: Princeton University Press

Published: 1955

Total Pages: 462

ISBN-13: 9780691028934

DOWNLOAD EBOOK

A revolutionary book that for the first time provided a rigorous mathematical framework for quantum mechanics. -- Google books


Mathematical Foundations of Statistical Mechanics

Mathematical Foundations of Statistical Mechanics

Author: Aleksandr I?Akovlevich Khinchin

Publisher: Courier Corporation

Published: 1949-01-01

Total Pages: 212

ISBN-13: 9780486601472

DOWNLOAD EBOOK

Phase space, ergodic problems, central limit theorem, dispersion and distribution of sum functions. Chapters include Geometry and Kinematics of the Phase Space; Ergodic Problem; Reduction to the Problem of the Theory of Probability; Application of the Central Limit Theorem; Ideal Monatomic Gas; The Foundation of Thermodynamics; and more.


Mathematical Foundations Of Quantum Field Theory

Mathematical Foundations Of Quantum Field Theory

Author: Albert Schwarz

Publisher: World Scientific

Published: 2020-04-15

Total Pages: 461

ISBN-13: 981327865X

DOWNLOAD EBOOK

The book is very different from other books devoted to quantum field theory, both in the style of exposition and in the choice of topics. Written for both mathematicians and physicists, the author explains the theoretical formulation with a mixture of rigorous proofs and heuristic arguments; references are given for those who are looking for more details. The author is also careful to avoid ambiguous definitions and statements that can be found in some physics textbooks.In terms of topics, almost all other books are devoted to relativistic quantum field theory, conversely this book is concentrated on the material that does not depend on the assumptions of Lorentz-invariance and/or locality. It contains also a chapter discussing application of methods of quantum field theory to statistical physics, in particular to the derivation of the diagram techniques that appear in thermo-field dynamics and Keldysh formalism. It is not assumed that the reader is familiar with quantum mechanics; the book contains a short introduction to quantum mechanics for mathematicians and an appendix devoted to some mathematical facts used in the book.


Mathematical Foundations of Quantum Mechanics

Mathematical Foundations of Quantum Mechanics

Author: George W. Mackey

Publisher: Courier Corporation

Published: 2013-12-31

Total Pages: 162

ISBN-13: 0486154475

DOWNLOAD EBOOK

This graduate-level text introduces fundamentals of classical mechanics; surveys basics of quantum mechanics; and concludes with a look at group theory and quantum mechanics of the atom. 1963 edition.


Quantum Statistical Mechanics

Quantum Statistical Mechanics

Author: William C. Schieve

Publisher: Cambridge University Press

Published: 2009-04-16

Total Pages: 429

ISBN-13: 0521841461

DOWNLOAD EBOOK

Introduces many-body theory of modern quantum statistical mechanics to graduate students in physics, chemistry, engineering and biology.


Mathematical Foundations of Quantum Theory

Mathematical Foundations of Quantum Theory

Author: A.R. Marlow

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 383

ISBN-13: 0323141188

DOWNLOAD EBOOK

Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book then describes the Lorentz particle system and other mathematical structures with which fundamental quantum theory must deal, and then some unsolved problems in the quantum logic approach to the foundations of quantum mechanics are considered. Considerable chapters cover topics on manuals and logics for quantum mechanics. This book also examines the problems in quantum logic, and then presents examples of their interpretation and relevance to nonclassical logic and statistics. The accommodation of conventional Fermi-Dirac and Bose-Einstein statistics in quantum mechanics or quantum field theory is illustrated. The final chapters of the book present a system of axioms for nonrelativistic quantum mechanics, with particular emphasis on the role of density operators as states. Specific connections of this theory with other formulations of quantum theory are also considered. These chapters also deal with the determination of the state of an elementary quantum mechanical system by the associated position and momentum distribution. This book is of value to physicists, mathematicians, and researchers who are interested in quantum theory.


Statistical Structure of Quantum Theory

Statistical Structure of Quantum Theory

Author: Alexander S. Holevo

Publisher: Springer Science & Business Media

Published: 2001-06-20

Total Pages: 189

ISBN-13: 3540420827

DOWNLOAD EBOOK

New ideas on the mathematical foundations of quantum mechanics, related to the theory of quantum measurement, as well as the emergence of quantum optics, quantum electronics and optical communications have shown that the statistical structure of quantum mechanics deserves special investigation. In the meantime it has become a mature subject. In this book, the author, himself a leading researcher in this field, surveys the basic principles and results of the theory, concentrating on mathematically precise formulations. Special attention is given to the measurement dynamics. The presentation is pragmatic, concentrating on the ideas and their motivation. For detailed proofs, the readers, researchers and graduate students, are referred to the extensively documented literature.


Mathematical Foundations of Classical Statistical Mechanics

Mathematical Foundations of Classical Statistical Mechanics

Author: D.Ya. Petrina

Publisher: CRC Press

Published: 2002-04-11

Total Pages: 352

ISBN-13: 9780415273541

DOWNLOAD EBOOK

This monograph considers systems of infinite number of particles, in particular the justification of the procedure of thermodynamic limit transition. The authors discuss the equilibrium and non-equilibrium states of infinite classical statistical systems. Those states are defined in terms of stationary and nonstationary solutions to the Bogolyubov equations for the sequences of correlation functions in the thermodynamic limit. This is the first detailed investigation of the thermodynamic limit for non-equilibrium systems and of the states of infinite systems in the cases of both canonical and grand canonical ensembles, for which the thermodynamic equivalence is proved. A comprehensive survey of results is also included; it concerns the properties of correlation functions for infinite systems and the corresponding equations. For this new edition, the authors have made changes to reflect the development of theory in the last ten years. They have also simplified certain sections, presenting them more systematically, and greatly increased the number of references. The book is aimed at theoretical physicists and mathematicians and will also be of use to students and postgraduate students in the field.


Foundations of Classical and Quantum Statistical Mechanics

Foundations of Classical and Quantum Statistical Mechanics

Author: R. Jancel

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 441

ISBN-13: 1483186261

DOWNLOAD EBOOK

Foundations of Classical and Quantum Statistical Mechanics details the theoretical foundation the supports the concepts in classical and quantum statistical mechanics. The title discusses the various problems set by the theoretical justification of statistical mechanics methods. The text first covers the the ergodic theory in classical statistical mechanics, and then proceeds to tackling quantum mechanical ensembles. Next, the selection discusses the the ergodic theorem in quantum statistical mechanics and probability quantum ergodic theorems. The selection also details H-theorems and kinetic equations in classical and quantum statistical mechanics. The book will be of great interest to students, researchers, and practitioners of physics, chemistry, and engineering.