Mathematical Foundations of Elasticity

Mathematical Foundations of Elasticity

Author: Jerrold E. Marsden

Publisher: Courier Corporation

Published: 1994-01-01

Total Pages: 578

ISBN-13: 0486678652

DOWNLOAD EBOOK

Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.


Mathematical Foundations of Elasticity

Mathematical Foundations of Elasticity

Author: Jerrold E. Marsden

Publisher: Courier Corporation

Published: 2012-10-25

Total Pages: 578

ISBN-13: 0486142272

DOWNLOAD EBOOK

Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.


Elasticity

Elasticity

Author: Martin H. Sadd

Publisher: Elsevier

Published: 2010-08-04

Total Pages: 474

ISBN-13: 008047747X

DOWNLOAD EBOOK

Although there are several books in print dealing with elasticity, many focus on specialized topics such as mathematical foundations, anisotropic materials, two-dimensional problems, thermoelasticity, non-linear theory, etc. As such they are not appropriate candidates for a general textbook. This book provides a concise and organized presentation and development of general theory of elasticity. This text is an excellent book teaching guide. - Contains exercises for student engagement as well as the integration and use of MATLAB Software - Provides development of common solution methodologies and a systematic review of analytical solutions useful in applications of


Non-Linear Elastic Deformations

Non-Linear Elastic Deformations

Author: R. W. Ogden

Publisher: Courier Corporation

Published: 2013-04-26

Total Pages: 562

ISBN-13: 0486318710

DOWNLOAD EBOOK

Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.


Mathematical Foundation of Geodesy

Mathematical Foundation of Geodesy

Author: Kai Borre

Publisher: Springer Science & Business Media

Published: 2006-09-23

Total Pages: 415

ISBN-13: 3540337679

DOWNLOAD EBOOK

This volume contains selected papers by Torben Krarup, one of the most important geodesists of the 20th century. The collection includes the famous booklet "A Contribution to the Mathematical Foundation of Physical Geodesy" from 1969, the unpublished "Molodenskij letters" from 1973, the final version of "Integrated Geodesy" from 1978, "Foundation of a Theory of Elasticity for Geodetic Networks" from 1974, as well as trend-setting papers on the theory of adjustment.


The Mathematical Foundation of Structural Mechanics

The Mathematical Foundation of Structural Mechanics

Author: F. Hartmann

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 383

ISBN-13: 3642824013

DOWNLOAD EBOOK

This book attempts to acquaint engineers who have mastered the essentials of structural mechanics with the mathematical foundation of their science, of structural mechanics of continua. The prerequisites are modest. A good working knowledge of calculus is sufficient. The intent is to develop a consistent and logical framework of theory which will provide a general understanding of how mathematics forms the basis of structural mechanics. Emphasis is placed on a systematic, unifying and rigorous treatment. Acknowledgements The author feels indebted to the engineers Prof. D. Gross, Prof. G. Mehlhorn and Prof. H. G. Schafer (TH Darmstadt) whose financial support allowed him to follow his inclinations and to study mathematics, to Prof. E. Klingbeil and Prof. W. Wendland (TH Darmstadt) for their unceasing effort to achieve the impossible, to teach an engineer mathematics, to the staff of the Department of Civil Engineering at the University of California, Irvine, for their generous hospitality in the academic year 1980-1981, to Prof. R. Szilard (Univ. of Dortmund) for the liberty he granted the author in his daily chores, to Mrs. Thompson (Univ. of Dortmund) and Prof. L. Kollar (Budapest/Univ. of Dortmund) for their help in the preparation of the final draft, to my young colleagues, Dipl.-Ing. S. Pickhardt, Dipl.-Ing. D. Ziesing and Dipl.-Ing. R. Zotemantel for many fruitful discussions, and to cando ing. P. Schopp and Frau Middeldorf for their help in the production of the manuscript. Dortmund, January 1985 Friedel Hartmann Contents Notations ........................................................... XII Introduction ........................................................ .


Mathematical Methods in Physics and Engineering

Mathematical Methods in Physics and Engineering

Author: John W. Dettman

Publisher: Courier Corporation

Published: 2013-01-23

Total Pages: 450

ISBN-13: 0486169367

DOWNLOAD EBOOK

Intended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For this second revised edition, Professor Dettman included a new section on generalized functions to help explain the use of the Dirac delta function in connection with Green's functions. In addition, a new approach to series solutions of ordinary differential equations has made the treatment independent of complex variable theory. This means that the first six chapters can be grasped without prior knowledge of complex variables. However, since Chapter 8 depends heavily on analytic functions of a complex variable, a new Chapter 7 on analytic function theory has been written.


Computational Methods in Elasticity and Plasticity

Computational Methods in Elasticity and Plasticity

Author: A. Anandarajah

Publisher: Springer Science & Business Media

Published: 2011-01-04

Total Pages: 665

ISBN-13: 1441963790

DOWNLOAD EBOOK

Computational Methods in Elasticity and Plasticity: Solids and Porous Media presents the latest developments in the area of elastic and elasto-plastic finite element modeling of solids, porous media and pressure-dependent materials and structures. The book covers the following topics in depth: the mathematical foundations of solid mechanics, the finite element method for solids and porous media, the theory of plasticity and the finite element implementation of elasto-plastic constitutive models. The book also includes: -A detailed coverage of elasticity for isotropic and anisotropic solids. -A detailed treatment of nonlinear iterative methods that could be used for nonlinear elastic and elasto-plastic analyses. -A detailed treatment of a kinematic hardening von Mises model that could be used to simulate cyclic behavior of solids. -Discussion of recent advances in the analysis of porous media and pressure-dependent materials in more detail than other books currently available. Computational Methods in Elasticity and Plasticity: Solids and Porous Media also contains problem sets, worked examples and a solutions manual for instructors.


Elasticity

Elasticity

Author: Pei Chi Chou

Publisher: Courier Corporation

Published: 2013-02-06

Total Pages: 322

ISBN-13: 0486136140

DOWNLOAD EBOOK

Exceptionally clear text treats elasticity from engineering and mathematical viewpoints. Comprehensive coverage of stress, strain, equilibrium, compatibility, Hooke's law, plane problems, torsion, energy, stress functions, more. 114 illustrations. 1967 edition.