Mathematical Foundations of Computer Networking

Mathematical Foundations of Computer Networking

Author: Srinivasan Keshav

Publisher: Pearson Education

Published: 2012

Total Pages: 496

ISBN-13: 0321792106

DOWNLOAD EBOOK

Mathematical techniques pervade current research in computer networking, yet are not taught to most computer science undergraduates. This self-contained, highly-accessible book bridges the gap, providing the mathematical grounding students and professionals need to successfully design or evaluate networking systems. The only book of its kind, it brings together information previously scattered amongst multiple texts. It first provides crucial background in basic mathematical tools, and then illuminates the specific theories that underlie computer networking. Coverage includes: * Basic probability * Statistics * Linear Algebra * Optimization * Signals, Systems, and Transforms, including Fourier series and transforms, Laplace transforms, DFT, FFT, and Z transforms * Queuing theory * Game Theory * Control theory * Information theory


Mathematical Foundations of Computer Networking

Mathematical Foundations of Computer Networking

Author: Srinivasan Keshav

Publisher: Addison-Wesley

Published: 2012-04-20

Total Pages: 496

ISBN-13: 0132826135

DOWNLOAD EBOOK

“To design future networks that are worthy of society’s trust, we must put the ‘discipline’ of computer networking on a much stronger foundation. This book rises above the considerable minutiae of today’s networking technologies to emphasize the long-standing mathematical underpinnings of the field.” –Professor Jennifer Rexford, Department of Computer Science, Princeton University “This book is exactly the one I have been waiting for the last couple of years. Recently, I decided most students were already very familiar with the way the net works but were not being taught the fundamentals–the math. This book contains the knowledge for people who will create and understand future communications systems." –Professor Jon Crowcroft, The Computer Laboratory, University of Cambridge The Essential Mathematical Principles Required to Design, Implement, or Evaluate Advanced Computer Networks Students, researchers, and professionals in computer networking require a firm conceptual understanding of its foundations. Mathematical Foundations of Computer Networking provides an intuitive yet rigorous introduction to these essential mathematical principles and techniques. Assuming a basic grasp of calculus, this book offers sufficient detail to serve as the only reference many readers will need. Each concept is described in four ways: intuitively; using appropriate mathematical notation; with a numerical example carefully chosen for its relevance to networking; and with a numerical exercise for the reader. The first part of the text presents basic concepts, and the second part introduces four theories in a progression that has been designed to gradually deepen readers’ understanding. Within each part, chapters are as self-contained as possible. The first part covers probability; statistics; linear algebra; optimization; and signals, systems, and transforms. Topics range from Bayesian networks to hypothesis testing, and eigenvalue computation to Fourier transforms. These preliminary chapters establish a basis for the four theories covered in the second part of the book: queueing theory, game theory, control theory, and information theory. The second part also demonstrates how mathematical concepts can be applied to issues such as contention for limited resources, and the optimization of network responsiveness, stability, and throughput.


Mathematical Foundations for Signal Processing, Communications, and Networking

Mathematical Foundations for Signal Processing, Communications, and Networking

Author: Erchin Serpedin

Publisher: CRC Press

Published: 2017-12-04

Total Pages: 852

ISBN-13: 1439855145

DOWNLOAD EBOOK

Mathematical Foundations for Signal Processing, Communications, and Networking describes mathematical concepts and results important in the design, analysis, and optimization of signal processing algorithms, modern communication systems, and networks. Helping readers master key techniques and comprehend the current research literature, the book offers a comprehensive overview of methods and applications from linear algebra, numerical analysis, statistics, probability, stochastic processes, and optimization. From basic transforms to Monte Carlo simulation to linear programming, the text covers a broad range of mathematical techniques essential to understanding the concepts and results in signal processing, telecommunications, and networking. Along with discussing mathematical theory, each self-contained chapter presents examples that illustrate the use of various mathematical concepts to solve different applications. Each chapter also includes a set of homework exercises and readings for additional study. This text helps readers understand fundamental and advanced results as well as recent research trends in the interrelated fields of signal processing, telecommunications, and networking. It provides all the necessary mathematical background to prepare students for more advanced courses and train specialists working in these areas.


Theoretical and Mathematical Foundations of Computer Science

Theoretical and Mathematical Foundations of Computer Science

Author: Qihai Zhou

Publisher: Springer

Published: 2011-10-29

Total Pages: 629

ISBN-13: 364224999X

DOWNLOAD EBOOK

This book constitutes the refereed post-proceedings of the Second International Conference on Theoretical and Mathematical Foundations of Computer Science, ICTMF 2011, held in Singapore in May 2011. The conference was held together with the Second International Conference on High Performance Networking, Computing, and Communication systems, ICHCC 2011, which proceedings are published in CCIS 163. The 84 revised selected papers presented were carefully reviewed and selected for inclusion in the book. The topics covered range from computational science, engineering and technology to digital signal processing, and computational biology to game theory, and other related topices.


Mathematical and Algorithmic Foundations of the Internet

Mathematical and Algorithmic Foundations of the Internet

Author: Fabrizio Luccio

Publisher: CRC Press

Published: 2011-07-06

Total Pages: 224

ISBN-13: 1439831386

DOWNLOAD EBOOK

To truly understand how the Internet and Web are organized and function requires knowledge of mathematics and computation theory. Mathematical and Algorithmic Foundations of the Internet introduces the concepts and methods upon which computer networks rely and explores their applications to the Internet and Web. The book offers a unique approach to mathematical and algorithmic concepts, demonstrating their universality by presenting ideas and examples from various fields, including literature, history, and art. Progressing from fundamental concepts to more specific topics and applications, the text covers computational complexity and randomness, networks and graphs, parallel and distributed computing, and search engines. While the mathematical treatment is rigorous, it is presented at a level that can be grasped by readers with an elementary mathematical background. The authors also present a lighter side to this complex subject by illustrating how many of the mathematical concepts have counterparts in everyday life. The book provides in-depth coverage of the mathematical prerequisites and assembles a complete presentation of how computer networks function. It is a useful resource for anyone interested in the inner functioning, design, and organization of the Internet.


Mathematical Foundations and Applications of Graph Entropy

Mathematical Foundations and Applications of Graph Entropy

Author: Matthias Dehmer

Publisher: John Wiley & Sons

Published: 2017-09-12

Total Pages: 298

ISBN-13: 3527339094

DOWNLOAD EBOOK

This latest addition to the successful Network Biology series presents current methods for determining the entropy of networks, making it the first to cover the recently established Quantitative Graph Theory. An excellent international team of editors and contributors provides an up-to-date outlook for the field, covering a broad range of graph entropy-related concepts and methods. The topics range from analyzing mathematical properties of methods right up to applying them in real-life areas. Filling a gap in the contemporary literature this is an invaluable reference for a number of disciplines, including mathematicians, computer scientists, computational biologists, and structural chemists.


Advances in Quantitative Ethnography

Advances in Quantitative Ethnography

Author: Andrew R. Ruis

Publisher: Springer Nature

Published: 2021-01-28

Total Pages: 432

ISBN-13: 3030677885

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the Second International Conference on Quantitative Ethnography, ICQE 2020, held in February 2021. Due to the COVID-19 pandemic the conference has been postponed to 2021 and was held in online format. The 28 full papers were selected from 56 submissions. The contributions in this volume come from diverse fields and perspectives, and present the studies on advantages of using quantitative ethnography methods and techniques in a number of different domains and contexts, including ethnography and statistics, human interpretation and machine processing, etc.


Foundations of Data Science

Foundations of Data Science

Author: Avrim Blum

Publisher: Cambridge University Press

Published: 2020-01-23

Total Pages: 433

ISBN-13: 1108617360

DOWNLOAD EBOOK

This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.


Combinatorics for Computer Science

Combinatorics for Computer Science

Author: Stanley Gill Williamson

Publisher: Courier Corporation

Published: 2002-01-01

Total Pages: 548

ISBN-13: 9780486420769

DOWNLOAD EBOOK

Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics. References for Linear Order & for Graphs, Trees, and Recursions. 219 figures.