Introduction to Mathematical Fluid Dynamics

Introduction to Mathematical Fluid Dynamics

Author: Richard E. Meyer

Publisher: Courier Corporation

Published: 2012-03-08

Total Pages: 194

ISBN-13: 0486138941

DOWNLOAD EBOOK

Geared toward advanced undergraduate and graduate students in applied mathematics, engineering, and the physical sciences, this introductory text covers kinematics, momentum principle, Newtonian fluid, compressibility, and other subjects. 1971 edition.


A Mathematical Introduction to Fluid Mechanics

A Mathematical Introduction to Fluid Mechanics

Author: A. J. Chorin

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 213

ISBN-13: 1468400827

DOWNLOAD EBOOK

These notes are based on a one-quarter (i. e. very short) course in fluid mechanics taught in the Department of Mathematics of the University of California, Berkeley during the Spring of 1978. The goal of the course was not to provide an exhaustive account of fluid mechanics, nor to assess the engineering value of various approxima tion procedures. The goals were: (i) to present some of the basic ideas of fluid mechanics in a mathematically attractive manner (which does not mean "fully rigorous"); (ii) to present the physical back ground and motivation for some constructions which have been used in recent mathematical and numerical work on the Navier-Stokes equations and on hyperbolic systems; (iil. ) 'to interest some of the students in this beautiful and difficult subject. The notes are divided into three chapters. The first chapter contains an elementary derivation of the equations; the concept of vorticity is introduced at an early stage. The second chapter contains a discussion of potential flow, vortex motion, and boundary layers. A construction of boundary layers using vortex sheets and random walks is presented; it is hoped that it helps to clarify the ideas. The third chapter contains an analysis of one-dimensional gas iv flow, from a mildly modern point of view. Weak solutions, Riemann problems, Glimm's scheme, and combustion waves are discussed. The style is informal and no attempt was made to hide the authors' biases and interests.


Mathematical Aspects of Fluid Mechanics

Mathematical Aspects of Fluid Mechanics

Author: James C. Robinson

Publisher: Cambridge University Press

Published: 2012-10-18

Total Pages: 275

ISBN-13: 1139577212

DOWNLOAD EBOOK

The rigorous mathematical theory of the equations of fluid dynamics has been a focus of intense activity in recent years. This volume is the product of a workshop held at the University of Warwick to consolidate, survey and further advance the subject. The Navier–Stokes equations feature prominently: the reader will find new results concerning feedback stabilisation, stretching and folding, and decay in norm of solutions to these fundamental equations of fluid motion. Other topics covered include new models for turbulent energy cascade, existence and uniqueness results for complex fluids and certain interesting solutions of the SQG equation. The result is an accessible collection of survey articles and more traditional research papers that will serve both as a helpful overview for graduate students new to the area and as a useful resource for more established researchers.


Vectors, Tensors and the Basic Equations of Fluid Mechanics

Vectors, Tensors and the Basic Equations of Fluid Mechanics

Author: Rutherford Aris

Publisher: Courier Corporation

Published: 2012-08-28

Total Pages: 322

ISBN-13: 048613489X

DOWNLOAD EBOOK

Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.


Handbook of Mathematical Fluid Dynamics

Handbook of Mathematical Fluid Dynamics

Author: S. Friedlander

Publisher: Gulf Professional Publishing

Published: 2003-03-27

Total Pages: 627

ISBN-13: 008053354X

DOWNLOAD EBOOK

The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.


Mathematical Theory of Compressible Viscous Fluids

Mathematical Theory of Compressible Viscous Fluids

Author: Eduard Feireisl

Publisher: Birkhäuser

Published: 2016-11-25

Total Pages: 189

ISBN-13: 3319448358

DOWNLOAD EBOOK

This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematics. It will help graduate students and researchers to not only better understand problems in mathematical compressible fluid mechanics but also to learn something from the field of mathematical and numerical analysis and to see the connections between the two worlds. Potential readers should possess a good command of the basic tools of functional analysis and partial differential equations including the function spaces of Sobolev type.


Interfacial Fluid Mechanics

Interfacial Fluid Mechanics

Author: Vladimir S. Ajaev

Publisher: Springer Science & Business Media

Published: 2012-02-07

Total Pages: 219

ISBN-13: 1461413419

DOWNLOAD EBOOK

Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then, several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail. Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces,evaporation/condensation, and surfactant phenomena are discussed in the later chapters.


Mathematical Fluid Mechanics

Mathematical Fluid Mechanics

Author: Jiri Neustupa

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 271

ISBN-13: 3034882432

DOWNLOAD EBOOK

Mathematical modeling and numerical simulation in fluid mechanics are topics of great importance both in theory and technical applications. The present book attempts to describe the current status in various areas of research. The 10 chapters, mostly survey articles, are written by internationally renowned specialists and offer a range of approaches to and views of the essential questions and problems. In particular, the theories of incompressible and compressible Navier-Stokes equations are considered, as well as stability theory and numerical methods in fluid mechanics. Although the book is primarily written for researchers in the field, it will also serve as a valuable source of information to graduate students.