Mathematical, Computational and Experimental T Cell Immunology

Mathematical, Computational and Experimental T Cell Immunology

Author: Carmen Molina-París

Publisher: Springer Nature

Published: 2021-01-04

Total Pages: 300

ISBN-13: 3030572048

DOWNLOAD EBOOK

Mathematical, statistical, and computational methods enable multi-disciplinary approaches that catalyse discovery. Together with experimental methods, they identify key hypotheses, define measurable observables and reconcile disparate results. This volume collects a representative sample of studies in T cell immunology that illustrate the benefits of modelling-experimental collaborations and which have proven valuable or even ground-breaking. Studies include thymic selection, T cell repertoire diversity, T cell homeostasis in health and disease, T cell-mediated immune responses, T cell memory, T cell signalling and analysis of flow cytometry data sets. Contributing authors are leading scientists in the area of experimental, computational, and mathematical immunology. Each chapter includes state-of-the-art and pedagogical content, making this book accessible to readers with limited experience in T cell immunology and/or mathematical and computational modelling.


Killer Cell Dynamics

Killer Cell Dynamics

Author: Dominik Wodarz

Publisher: Springer Science & Business Media

Published: 2007-04-05

Total Pages: 226

ISBN-13: 0387687335

DOWNLOAD EBOOK

This book reviews how mathematical and computational approaches can be useful to help us understand how killer T-cell responses work to fight viral infections. It also demonstrates, in a writing style that exemplifies the point, that such mathematical and computational approaches are most valuable when coupled with experimental work through interdisciplinary collaborations. Designed to be useful to immunoligists and viroligists without extensive computational background, the book covers a broad variety of topics, including both basic immunological questions and the application of these insights to the understanding and treatment of pathogenic human diseases.


Computational Cell Biology

Computational Cell Biology

Author: Christopher P. Fall

Publisher: Springer Science & Business Media

Published: 2007-06-04

Total Pages: 484

ISBN-13: 0387224599

DOWNLOAD EBOOK

This textbook provides an introduction to dynamic modeling in molecular cell biology, taking a computational and intuitive approach. Detailed illustrations, examples, and exercises are included throughout the text. Appendices containing mathematical and computational techniques are provided as a reference tool.


Computational Immunology

Computational Immunology

Author: Josep Bassaganya-Riera

Publisher: Academic Press

Published: 2015-10-21

Total Pages: 212

ISBN-13: 0128037156

DOWNLOAD EBOOK

Computational Immunology: Models and Tools encompasses the methodological framework and application of cutting-edge tools and techniques to study immunological processes at a systems level, along with the concept of multi-scale modeling. The book's emphasis is on selected cases studies and application of the most updated technologies in computational modeling, discussing topics such as computational modeling and its usage in immunological research, bioinformatics infrastructure, ODE based modeling, agent based modeling, and high performance computing, data analytics, and multiscale modeling. There are also modeling exercises using recent tools and models which lead the readers to a thorough comprehension and applicability. The book is a valuable resource for immunologists, computational biologists, bioinformaticians, biotechnologists, and computer scientists, as well as all those who wish to broaden their knowledge in systems modeling. - Offers case studies with different levels of complexity - Provides a detailed view on cutting-edge tools for modeling that are useful to experimentalists with limited computational skills - Explores the usage of simulation for hypothesis generation, helping the reader to understand the most valuable points on experimental setting


A Course in Mathematical Biology

A Course in Mathematical Biology

Author: Gerda de Vries

Publisher: SIAM

Published: 2006-07-01

Total Pages: 307

ISBN-13: 0898718252

DOWNLOAD EBOOK

This is the only book that teaches all aspects of modern mathematical modeling and that is specifically designed to introduce undergraduate students to problem solving in the context of biology. Included is an integrated package of theoretical modeling and analysis tools, computational modeling techniques, and parameter estimation and model validation methods, with a focus on integrating analytical and computational tools in the modeling of biological processes. Divided into three parts, it covers basic analytical modeling techniques; introduces computational tools used in the modeling of biological problems; and includes various problems from epidemiology, ecology, and physiology. All chapters include realistic biological examples, including many exercises related to biological questions. In addition, 25 open-ended research projects are provided, suitable for students. An accompanying Web site contains solutions and a tutorial for the implementation of the computational modeling techniques. Calculations can be done in modern computing languages such as Maple, Mathematica, and MATLAB?.


Systems Immunology

Systems Immunology

Author: Jayajit Das

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 355

ISBN-13: 1498717411

DOWNLOAD EBOOK

"Taken together, the body of information contained in this book provides readers with a bird’s-eye view of different aspects of exciting work at the convergence of disciplines that will ultimately lead to a future where we understand how immunity is regulated, and how we can harness this knowledge toward practical ends that reduce human suffering. I commend the editors for putting this volume together." –Arup K. Chakraborty, Robert T. Haslam Professor of Chemical Engineering, and Professor of Physics, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA New experimental techniques in immunology have produced large and complex data sets that require quantitative modeling for analysis. This book provides a complete overview of computational immunology, from basic concepts to mathematical modeling at the single molecule, cellular, organism, and population levels. It showcases modern mechanistic models and their use in making predictions, designing experiments, and elucidating underlying biochemical processes. It begins with an introduction to data analysis, approximations, and assumptions used in model building. Core chapters address models and methods for studying immune responses, with fundamental concepts clearly defined. Readers from immunology, quantitative biology, and applied physics will benefit from the following: Fundamental principles of computational immunology and modern quantitative methods for studying immune response at the single molecule, cellular, organism, and population levels. An overview of basic concepts in modeling and data analysis. Coverage of topics where mechanistic modeling has contributed substantially to current understanding. Discussion of genetic diversity of the immune system, cell signaling in the immune system, immune response at the cell population scale, and ecology of host-pathogen interactions.


Catalyzing Inquiry at the Interface of Computing and Biology

Catalyzing Inquiry at the Interface of Computing and Biology

Author: National Research Council

Publisher: National Academies Press

Published: 2006-01-01

Total Pages: 469

ISBN-13: 030909612X

DOWNLOAD EBOOK

Advances in computer science and technology and in biology over the last several years have opened up the possibility for computing to help answer fundamental questions in biology and for biology to help with new approaches to computing. Making the most of the research opportunities at the interface of computing and biology requires the active participation of people from both fields. While past attempts have been made in this direction, circumstances today appear to be much more favorable for progress. To help take advantage of these opportunities, this study was requested of the NRC by the National Science Foundation, the Department of Defense, the National Institutes of Health, and the Department of Energy. The report provides the basis for establishing cross-disciplinary collaboration between biology and computing including an analysis of potential impediments and strategies for overcoming them. The report also presents a wealth of examples that should encourage students in the biological sciences to look for ways to enable them to be more effective users of computing in their studies.


In Silico Immunology

In Silico Immunology

Author: Darren D.R. Flower

Publisher: Springer Science & Business Media

Published: 2007-04-16

Total Pages: 453

ISBN-13: 0387392416

DOWNLOAD EBOOK

This book outlines three emergent disciplines, which are now poised to engineer a paradigm shift from hypothesis- to data-driven research: theoretical immunology, immunoinformatics, and Artificial Immune Systems. It details how these disciplines will enable new understanding to emerge from the analysis of complex datasets. Coverage shows how these three are set to transform immunological science and the future of health care.


Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease

Mathematical Modeling of the Immune System in Homeostasis, Infection and Disease

Author: Gennady Bocharov

Publisher: Frontiers Media SA

Published: 2020-02-24

Total Pages: 278

ISBN-13: 2889634612

DOWNLOAD EBOOK

The immune system provides the host organism with defense mechanisms against invading pathogens and tumor development and it plays an active role in tissue and organ regeneration. Deviations from the normal physiological functioning of the immune system can lead to the development of diseases with various pathologies including autoimmune diseases and cancer. Modern research in immunology is characterized by an unprecedented level of detail that has progressed towards viewing the immune system as numerous components that function together as a whole network. Currently, we are facing significant difficulties in analyzing the data being generated from high-throughput technologies for understanding immune system dynamics and functions, a problem known as the ‘curse of dimensionality’. As the mainstream research in mathematical immunology is based on low-resolution models, a fundamental question is how complex the mathematical models should be? To respond to this challenging issue, we advocate a hypothesis-driven approach to formulate and apply available mathematical modelling technologies for understanding the complexity of the immune system. Moreover, pure empirical analyses of immune system behavior and the system’s response to external perturbations can only produce a static description of the individual components of the immune system and the interactions between them. Shifting our view of the immune system from a static schematic perception to a dynamic multi-level system is a daunting task. It requires the development of appropriate mathematical methodologies for the holistic and quantitative analysis of multi-level molecular and cellular networks. Their coordinated behavior is dynamically controlled via distributed feedback and feedforward mechanisms which altogether orchestrate immune system functions. The molecular regulatory loops inherent to the immune system that mediate cellular behaviors, e.g. exhaustion, suppression, activation and tuning, can be analyzed using mathematical categories such as multi-stability, switches, ultra-sensitivity, distributed system, graph dynamics, or hierarchical control. GB is supported by the Russian Science Foundation (grant 18-11-00171). AM is also supported by grants from the Spanish Ministry of Economy, Industry and Competitiveness and FEDER grant no. SAF2016-75505-R, the “María de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0370) and the Russian Science Foundation (grant 18-11-00171).