Suitable for both students and teachers who love mathematics and want to study its various branches beyond the limits of school curriculum. This book contains vast theoretical and problem material in main areas of what authors consider to be 'extracurricular mathematics'.
Early middle school is a great time for children to start their mathematical circle education. This time is a period of curiosity and openness to learning. The thinking habits and study skills acquired by children at this age stay with them for a lifetime. Mathematical circles, with their question-driven approach and emphasis on creative problem-solving, have been rapidly gaining popularity in the United States. The circles expose children to the type of mathematics that stimulates development of logical thinking, creativity, analytical abilities and mathematical reasoning. These skills, while scarcely touched upon at school, are in high demand in the modern world. This book contains everything that is needed to run a successful mathematical circle for a full year. The materials, distributed among 29 weekly lessons, include detailed lectures and discussions, sets of problems with solutions, and contests and games. In addition, the book shares some of the know-how of running a mathematical circle. The curriculum, which is based on the rich and long-standing Russian math circle tradition, has been modified and adapted for teaching in the United States. For the past decade, the author has been actively involved in teaching a number of mathematical circles in the Seattle area. This book is based on her experience and on the compilation of materials from these circles. The material is intended for students in grades 5 to 7. It can be used by teachers and parents with various levels of expertise who are interested in teaching mathematics with the emphasis on critical thinking. Also, this book will be of interest to mathematically motivated children. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
The main part of this book describes the first semester of the existence of a successful and now highly popular program for elementary school students at the Berkeley Math Circle. The topics discussed in the book introduce the participants to the basics of many important areas of modern mathematics, including logic, symmetry, probability theory, knot theory, cryptography, fractals, and number theory. Each chapter in the first part of this book consists of two parts. It starts with generously illustrated sets of problems and hands-on activities. This part is addressed to young readers who can try to solve problems on their own or to discuss them with adults. The second part of each chapter is addressed to teachers and parents. It includes comments on the topics of the lesson, relates those topics to discussions in other chapters, and describes the actual reaction of math circle participants to the proposed activities. The supplementary problems that were discussed at workshops of Math Circle at Kansas State University are given in the second part of the book. The book is richly illustrated, which makes it attractive to its young audience. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).
This book is a captivating account of a professional mathematician's experiences conducting a math circle for preschoolers in his apartment in Moscow in the 1980s. As anyone who has taught or raised young children knows, mathematical education for little kids is a real mystery. What are they capable of? What should they learn first? How hard should they work? Should they even "work" at all? Should we push them, or just let them be? There are no correct answers to these questions, and the author deals with them in classic math-circle style: he doesn't ask and then answer a question, but shows us a problem--be it mathematical or pedagogical--and describes to us what happened. His book is a narrative about what he did, what he tried, what worked, what failed, but most important, what the kids experienced. This book does not purport to show you how to create precocious high achievers. It is just one person's story about things he tried with a half-dozen young children. Mathematicians, psychologists, educators, parents, and everybody interested in the intellectual development in young children will find this book to be an invaluable, inspiring resource. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).
Many mathematicians have been drawn to mathematics through their experience with math circles: extracurricular programs exposing teenage students to advanced mathematical topics and a myriad of problem solving techniques and inspiring in them a lifelong love for mathematics. Founded in 1998, the Berkeley Math Circle (BMC) is a pioneering model of a U.S. math circle, aspiring to prepare our best young minds for their future roles as mathematics leaders. Over the last decade, 50 instructors--from university professors to high school teachers to business tycoons--have shared their passion for mathematics by delivering more than 320 BMC sessions full of mathematical challenges and wonders. Based on a dozen of these sessions, this book encompasses a wide variety of enticing mathematical topics: from inversion in the plane to circle geometry; from combinatorics to Rubik's cube and abstract algebra; from number theory to mass point theory; from complex numbers to game theory via invariants and monovariants. The treatments of these subjects encompass every significant method of proof and emphasize ways of thinking and reasoning via 100 problem solving techniques. Also featured are 300 problems, ranging from beginner to intermediate level, with occasional peaks of advanced problems and even some open questions. The book presents possible paths to studying mathematics and inevitably falling in love with it, via teaching two important skills: thinking creatively while still ``obeying the rules,'' and making connections between problems, ideas, and theories. The book encourages you to apply the newly acquired knowledge to problems and guides you along the way, but rarely gives you ready answers. ``Learning from our own mistakes'' often occurs through discussions of non-proofs and common problem solving pitfalls. The reader has to commit to mastering the new theories and techniques by ``getting your hands dirty'' with the problems, going back and reviewing necessary problem solving techniques and theory, and persistently moving forward in the book. The mathematical world is huge: you'll never know everything, but you'll learn where to find things, how to connect and use them. The rewards will be substantial. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
Moscow has a rich tradition of successful math circles, to the extent that many other circles are modeled on them. This book presents materials used during the course of one year in a math circle organized by mathematics faculty at Moscow State University, and also used at the mathematics magnet school known as Moscow School Number 57. Each problem set has a similar structure: it combines review material with a new topic, offering problems in a range of difficulty levels. This time-tested pattern has proved its effectiveness in engaging all students and helping them master new material while building on earlier knowledge. The introduction describes in detail how the math circles at Moscow State University are run. Dorichenko describes how the early sessions differ from later sessions, how to choose problems, and what sorts of difficulties may arise when running a circle. The book also includes a selection of problems used in the competition known as the Mathematical Maze, a mathematical story based on actual lessons with students, and an addendum on the San Jose Mathematical Circle, which is run in the Russian style. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.
These two books are the first volumes of articales published from 1970 to 1990 in the Russian journal, Kvant. The influence of the this magazine on mathematics and physics education in Russia is unmatched. Articles selected for these two volumes are written by leading Russian mathematicians and expositors.
Math circles provide a setting in which mathematicians work with secondary school students who are interested in mathematics. This form of outreach, which has existed for decades in Russia, Bulgaria, and other countries, is now rapidly spreading across the United States as well. The first part of this book offers helpful advice on all aspects of math circle operations, culled from conversations with over a dozen directors of successful math circles. Topics include creative means for getting the word out to students, sound principles for selecting effective speakers, guidelines for securing financial support, and tips for designing an exciting math circle session. The purpose of this discussion is to enable math circle coordinators to establish a thriving group in which students can experience the delight of mathematical investigation. The second part of the book outlines ten independent math circle sessions, covering a variety of topics and difficulty levels. Each chapter contains detailed presentation notes along with a useful collection of problems and solutions. This book will be an indispensable resource for any individual involved with a math circle or anyone who would like to see one begin in his or her community. Sam Vandervelde teaches at St. Lawrence University. He launched the Stanford Math Circle and also writes and coordinates the Mandelbrot Competition, a math contest for high schools. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession. Titles in this series are co-published with the Mathematical Sciences Research Institute (MSRI).
Held annually in Moscow since 1990, the Mathematical Festival is a brilliant and fascinating math competition attended by hundreds of middle school students. This contains problems presented at the Festival during the years 1990-2011, along with hints and solutions for many of them. Most of the problems are accessible to students with no additional training in mathematics and may be used as supplementary material at school or at home.