This collection covers new aspects of numerical methods in applied mathematics, engineering, and health sciences. It provides recent theoretical developments and new techniques based on optimization theory, partial differential equations (PDEs), mathematical modeling and fractional calculus that can be used to model and understand complex behavior in natural phenomena. Specific topics covered in detail include new numerical methods for nonlinear partial differential equations, global optimization, unconstrained optimization, detection of HIV- Protease, modelling with new fractional operators, analysis of biological models, and stochastic modelling.
This volume covers some of the most seminal research in the areas of mathematical analysis and numerical computation for nonlinear phenomena. Collected from the international conference held in honor of Professor Yoshikazu Giga’s 60th birthday, the featured research papers and survey articles discuss partial differential equations related to fluid mechanics, electromagnetism, surface diffusion, and evolving interfaces. Specific focus is placed on topics such as the solvability of the Navier-Stokes equations and the regularity, stability, and symmetry of their solutions, analysis of a living fluid, stochastic effects and numerics for Maxwell’s equations, nonlinear heat equations in critical spaces, viscosity solutions describing various kinds of interfaces, numerics for evolving interfaces, and a hyperbolic obstacle problem. Also included in this volume are an introduction of Yoshikazu Giga’s extensive academic career and a long list of his published work. Students and researchers in mathematical analysis and computation will find interest in this volume on theoretical study for nonlinear phenomena.
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.
This volume highlights recent developments of stochastic analysis with a wide spectrum of applications, including stochastic differential equations, stochastic geometry, and nonlinear partial differential equations.While modern stochastic analysis may appear to be an abstract mixture of classical analysis and probability theory, this book shows that, in fact, it can provide versatile tools useful in many areas of applied mathematics where the phenomena being described are random. The geometrical aspects of stochastic analysis, often regarded as the most promising for applications, are specially investigated by various contributors to the volume.
Nonlinear Phenomena in Mathematical Sciences contains the proceedings of an International Conference on Nonlinear Phenomena in Mathematical Sciences, held at the University of Texas at Arlington, on June 16-20,1980. The papers explore trends in nonlinear phenomena in mathematical sciences, with emphasis on nonlinear functional analytic methods and their applications; nonlinear wave theory; and applications to medical and life sciences. In the area of nonlinear functional analytic methods and their applications, the following subjects are discussed: optimal control theory; periodic oscillations of nonlinear mechanical systems; Leray-Schauder degree theory; differential inequalities applied to parabolic and elliptic partial differential equations; bifurcation theory, stability theory in analytical mechanics; singular and ordinary boundary value problems, etc. The following topics in nonlinear wave theory are considered: nonlinear wave propagation in a randomly homogeneous media; periodic solutions of a semilinear wave equation; asymptotic behavior of solutions of strongly damped nonlinear wave equations; shock waves and dissipation theoretical methods for a nonlinear Schr?dinger equation; and nonlinear hyperbolic Volterra equations occurring in viscoelasticity. Applications to medical and life sciences include mathematical modeling in physiology, pharmacokinetics, and neuro-mathematics, along with epidemic modeling and parameter estimation techniques. This book will be helpful to students, practitioners, and researchers in the field of mathematics.
This book focuses on the latest applications of nonlinear approaches in engineering and addresses a range of scientific problems. Examples focus on issues in automotive technology, including automotive dynamics, control for electric and hybrid vehicles, and autodriver algorithm for autonomous vehicles. Also included are discussions on renewable energy plants, data modeling, driver-aid methods, and low-frequency vibration. Chapters are based on invited contributions from world-class experts who advance the future of engineering by discussing the development of more optimal, accurate, efficient, cost, and energy effective systems. This book is appropriate for researchers, students, and practising engineers who are interested in the applications of nonlinear approaches to solving engineering and science problems. Presents a broad range of practical topics and approaches; Explains approaches to better, safer, and cheaper systems; Emphasises automotive applications, physical meaning, and methodologies.
Philosophy of the Text This text has been designed to be an introductory survey of the basic concepts and applied mathematical methods of nonlinear science. Students in engineer ing, physics, chemistry, mathematics, computing science, and biology should be able to successfully use this text. In an effort to provide the students with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of Maple V Release 4 applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The diskette which accompanies the text gives a wide variety of illustrative nonlinear examples solved with Maple. An accompanying laboratory manual of experimental activities keyed to the text allows the student the option of "hands on" experience in exploring nonlinear phenomena in the REAL world. Although the experiments are easy to perform, they give rise to experimental and theoretical complexities which are not to be underestimated. The Level of the Text The essential prerequisites for the first eight chapters of this text would nor mally be one semester of ordinary differential equations and an intermediate course in classical mechanics.
Divorce rates are at an all-time high. But without a theoretical understanding of the processes related to marital stability and dissolution, it is difficult to design and evaluate new marriage interventions. The Mathematics of Marriage provides the foundation for a scientific theory of marital relations. The book does not rely on metaphors, but develops and applies a mathematical model using difference equations. The work is the fulfillment of the goal to build a mathematical framework for the general system theory of families first suggested by Ludwig Von Bertalanffy in the 1960s.The book also presents a complete introduction to the mathematics involved in theory building and testing, and details the development of experiments and models. In one "marriage experiment," for example, the authors explored the effects of lowering or raising a couple's heart rates. Armed with their mathematical model, they were able to do real experiments to determine which processes were affected by their interventions. Applying ideas such as phase space, null clines, influence functions, inertia, and uninfluenced and influenced stable steady states (attractors), the authors show how other researchers can use the methods to weigh their own data with positive and negative weights. While the focus is on modeling marriage, the techniques can be applied to other types of psychological phenomena as well.
Nonlinear Waves in Integrable and Nonintegrable Systems presents cutting-edge developments in the theory and experiments of nonlinear waves. Its comprehensive coverage of analytical and numerical methods for nonintegrable systems is the first of its kind. This book is intended for researchers and graduate students working in applied mathematics and various physical subjects where nonlinear wave phenomena arise (such as nonlinear optics, Bose-Einstein condensates, and fluid dynamics).
This book explores recent developments in theoretical research and mathematical modelling of real-world complex systems, organized in four parts. The first part of the book is devoted to the mathematical tools for the design and analysis in engineering and social science study cases. We discuss the periodic evolutions in nonlinear chemical processes, vibro-compact systems and their behaviour, different types of metal–semiconductor self-assembled samples, made of silver nanowires and zinc oxide nanorods. The second part of the book is devoted to mathematical description and modelling of the critical events, climate change and robust emergency scales. In three chapters, we consider a climate-economy model with endogenous carbon intensity and the behaviour of Tehran Stock Exchange market under international sanctions. The third part of the book is devoted to fractional dynamic and fractional control problems. We discuss the novel operational matrix technique for variable-order fractional optimal control problems, the nonlinear variable-order time fractional convection–diffusion equation with generalized polynomials The fourth part of the book concerns solvability and inverse problems in differential and integro-differential equations. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering. It can be read by mathematicians, physicists, complex systems scientists, IT specialists, civil engineers, data scientists and urban planners.