Mathematical and Numerical Modelling in Electrical Engineering Theory and Applications

Mathematical and Numerical Modelling in Electrical Engineering Theory and Applications

Author: Michal Krízek

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 311

ISBN-13: 9401586721

DOWNLOAD EBOOK

Mathematical modeling plays an essential role in science and engineering. Costly and time consuming experiments (if they can be done at all) are replaced by computational analysis. In industry, commercial codes are widely used. They are flexible and can be adjusted for solving specific problems of interest. Solving large problems with tens or hundreds of thousands unknowns becomes routine. The aim of analysis is to predict the behavior of the engineering and physical reality usually within the constraints of cost and time. Today, human cost and time are more important than computer cost. This trend will continue in the future. Agreement between computational results and reality is related to two factors, namely mathematical formulation of the problems and the accuracy of the numerical solution. The accuracy has to be understood in the context of the aim of the analysis. A small error in an inappropriate norm does not necessarily mean that the computed results are usable for practical purposes.


Applied Numerical Modelling for Engineers

Applied Numerical Modelling for Engineers

Author: Donard De Cogan

Publisher: Oxford University Press, USA

Published: 1997

Total Pages: 0

ISBN-13: 9780198564379

DOWNLOAD EBOOK

A good mathematical model of a physical situation leads to improved understanding. A good model must be robust (its underlying assumptions must not lead to inconsistent results) and it must be predictive anticipating results that can be verified by experiment. This book shows engineers how to construct or choose such models and how to solve them numerically. These are enormously important tasks in practical engineering.


Mathematical Models and Numerical Simulation in Electromagnetism

Mathematical Models and Numerical Simulation in Electromagnetism

Author: Alfredo Bermúdez de Castro

Publisher: Springer

Published: 2013-12-11

Total Pages: 432

ISBN-13: 9783319029481

DOWNLOAD EBOOK

The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.


Numerical Analysis with Applications in Mechanics and Engineering

Numerical Analysis with Applications in Mechanics and Engineering

Author: Petre Teodorescu

Publisher: John Wiley & Sons

Published: 2013-05-07

Total Pages: 458

ISBN-13: 1118614623

DOWNLOAD EBOOK

A much-needed guide on how to use numerical methods to solve practical engineering problems Bridging the gap between mathematics and engineering, Numerical Analysis with Applications in Mechanics and Engineering arms readers with powerful tools for solving real-world problems in mechanics, physics, and civil and mechanical engineering. Unlike most books on numerical analysis, this outstanding work links theory and application, explains the mathematics in simple engineering terms, and clearly demonstrates how to use numerical methods to obtain solutions and interpret results. Each chapter is devoted to a unique analytical methodology, including a detailed theoretical presentation and emphasis on practical computation. Ample numerical examples and applications round out the discussion, illustrating how to work out specific problems of mechanics, physics, or engineering. Readers will learn the core purpose of each technique, develop hands-on problem-solving skills, and get a complete picture of the studied phenomenon. Coverage includes: How to deal with errors in numerical analysis Approaches for solving problems in linear and nonlinear systems Methods of interpolation and approximation of functions Formulas and calculations for numerical differentiation and integration Integration of ordinary and partial differential equations Optimization methods and solutions for programming problems Numerical Analysis with Applications in Mechanics and Engineering is a one-of-a-kind guide for engineers using mathematical models and methods, as well as for physicists and mathematicians interested in engineering problems.


Numerical Modelling and Design of Electrical Machines and Devices

Numerical Modelling and Design of Electrical Machines and Devices

Author: Kay Hameyer

Publisher: WIT Press

Published: 1999-05-21

Total Pages: 337

ISBN-13: 1853126268

DOWNLOAD EBOOK

This text provides an overview of numerical field computational methods and, in particular, of the finite element method (FEM) in magnetics. Detailed attention is paid to the practical use of the FEM in designing electromagnetic devices such as motors, transformers and actuators. Based on the authors' extensive experience of teaching numerical techniques to students and design engineers, the book is ideal for use as a text at undergraduate and graduate level, or as a primer for practising engineers who wish to learn the fundamentals and immediately apply these to actual design problems. Contents: Introduction; Computer Aided Design in Magnetics; Electromagnetic Fields; Potentials and Formulations; Field Computation and Numerical Techniques; Coupled Field Problems; Numerical Optimisation; Linear System Equation Solvers; Modelling of Electrostatic and Magnetic Devices; Examples of Computed Models.


Mathematical Models in Electrical Circuits: Theory and Applications

Mathematical Models in Electrical Circuits: Theory and Applications

Author: C. A. Marinov

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 171

ISBN-13: 9401134405

DOWNLOAD EBOOK

One service mathematics has rendered the 'Et moi ... si favait su comment en revenir, je n'y seTais point alle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded n- sense', The series is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One scrvice logic has rendered com puter science .. .'; 'One service category theory has rendcred mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'e"tre of this scries.


Mathematical Models and Numerical Simulation in Electromagnetism

Mathematical Models and Numerical Simulation in Electromagnetism

Author: Alfredo Bermúdez de Castro

Publisher: Springer

Published: 2014-07-22

Total Pages: 440

ISBN-13: 3319029495

DOWNLOAD EBOOK

The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.


Model Order Reduction Techniques with Applications in Electrical Engineering

Model Order Reduction Techniques with Applications in Electrical Engineering

Author: L. Fortuna

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 242

ISBN-13: 1447131983

DOWNLOAD EBOOK

Model Order Reduction Techniqes focuses on model reduction problems with particular applications in electrical engineering. Starting with a clear outline of the technique and their wide methodological background, central topics are introduced including mathematical tools, physical processes, numerical computing experience, software developments and knowledge of system theory. Several model reduction algorithms are then discussed. The aim of this work is to give the reader an overview of reduced-order model design and an operative guide. Particular attention is given to providing basic concepts for building expert systems for model reducution.


Mathematical Modelling and Numerical Analysis in Electrical Engineering

Mathematical Modelling and Numerical Analysis in Electrical Engineering

Author: Udochukwu B Akuru

Publisher:

Published: 2024-08-07

Total Pages: 0

ISBN-13: 9783725817733

DOWNLOAD EBOOK

This special issue focuses on the mathematical modelling and numerical analysis methods employed in electrical engineering applications. The 11 manuscripts included utilize various analytical and computational techniques such as parameter modelling methods and numerical analyses to solve engineering problems in domains such as electric motors, power systems. One of these papers investigates line-start permanent magnet synchronous motors and explores the starting performance when parameters such as the supply voltage and cable length are varied; in addition, simulation and experimental methods are employed to characterize the motor behavior. Another study employs the finite element modelling technique to study the electric field distributions for lightning rod design. Additionally, optimization techniques such as the Nelder-Mead algorithm are applied to optimize a synchronous homopolar motor. Mathematical and numerical analyses of the induction and flux-switching motors are also presented. Transient simulations of the starting and synchronization processes, which incorporate the lumped parameter motor models of a line-start permanent magnet synchronous motor, are also undertaken. Other studies employ accurate models that have been developed for adjustable permanent magnet couplers, external magnetic fields and switched reluctance motors. Validation using finite element analyses and experiments demonstrates the feasibility and superiority of the proposed modelling approaches. The broad range of topics addressed reflects the extensive application of analytical techniques in electrical engineering research.