Mathematical Analysis of Problems in the Natural Sciences

Mathematical Analysis of Problems in the Natural Sciences

Author: Vladimir Zorich

Publisher: Springer Science & Business Media

Published: 2010-10-11

Total Pages: 133

ISBN-13: 3642148131

DOWNLOAD EBOOK

Based on a two-semester course aimed at illustrating various interactions of "pure mathematics" with other sciences, such as hydrodynamics, thermodynamics, statistical physics and information theory, this text unifies three general topics of analysis and physics, which are as follows: the dimensional analysis of physical quantities, which contains various applications including Kolmogorov's model for turbulence; functions of very large number of variables and the principle of concentration along with the non-linear law of large numbers, the geometric meaning of the Gauss and Maxwell distributions, and the Kotelnikov-Shannon theorem; and, finally, classical thermodynamics and contact geometry, which covers two main principles of thermodynamics in the language of differential forms, contact distributions, the Frobenius theorem and the Carnot-Caratheodory metric. It includes problems, historical remarks, and Zorich's popular article, "Mathematics as language and method."


Mathematics Applied to Deterministic Problems in the Natural Sciences

Mathematics Applied to Deterministic Problems in the Natural Sciences

Author: C. C. Lin

Publisher: SIAM

Published: 1988-12-01

Total Pages: 646

ISBN-13: 9780898712292

DOWNLOAD EBOOK

This book addresses the construction, analysis, and intepretation of mathematical models that shed light on significant problems in the physical sciences, with exercises that reinforce, test and extend the reader's understanding. It may be used as an upper level undergraduate or graduate textbook as well as a reference for researchers.


Mathematical Analysis I

Mathematical Analysis I

Author: Vladimir A. Zorich

Publisher: Springer Science & Business Media

Published: 2004-01-22

Total Pages: 610

ISBN-13: 9783540403869

DOWNLOAD EBOOK

This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.


Solving Problems in Mathematical Analysis, Part I

Solving Problems in Mathematical Analysis, Part I

Author: Tomasz Radożycki

Publisher: Springer

Published: 2020-02-21

Total Pages: 369

ISBN-13: 9783030358433

DOWNLOAD EBOOK

This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.


Mathematics for Natural Scientists

Mathematics for Natural Scientists

Author: Lev Kantorovich

Publisher: Springer

Published: 2015-10-08

Total Pages: 536

ISBN-13: 149392785X

DOWNLOAD EBOOK

This book covers a course of mathematics designed primarily for physics and engineering students. It includes all the essential material on mathematical methods, presented in a form accessible to physics students, avoiding precise mathematical jargon and proofs which are comprehensible only to mathematicians. Instead, all proofs are given in a form that is clear and convincing enough for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each section of the book. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.


Mathematical Analysis II

Mathematical Analysis II

Author: Vladimir A. Zorich

Publisher: Krishna Prakashan Media

Published: 2010-11-16

Total Pages: 792

ISBN-13:

DOWNLOAD EBOOK

The second volume expounds classical analysis as it is today, as a part of unified mathematics, and its interactions with modern mathematical courses such as algebra, differential geometry, differential equations, complex and functional analysis. The book provides a firm foundation for advanced work in any of these directions.


Solving Problems in Mathematical Analysis, Part I

Solving Problems in Mathematical Analysis, Part I

Author: Tomasz Radożycki

Publisher: Springer Nature

Published: 2020-02-20

Total Pages: 375

ISBN-13: 3030358445

DOWNLOAD EBOOK

This textbook offers an extensive list of completely solved problems in mathematical analysis. This first of three volumes covers sets, functions, limits, derivatives, integrals, sequences and series, to name a few. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.


Problems in Real Analysis

Problems in Real Analysis

Author: Teodora-Liliana Radulescu

Publisher: Springer Science & Business Media

Published: 2009-06-12

Total Pages: 462

ISBN-13: 0387773797

DOWNLOAD EBOOK

Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.


Inverse Problems in the Mathematical Sciences

Inverse Problems in the Mathematical Sciences

Author: Charles W. Groetsch

Publisher: Springer Science & Business Media

Published: 2013-12-14

Total Pages: 159

ISBN-13: 3322992020

DOWNLOAD EBOOK

Inverse problems are immensely important in modern science and technology. However, the broad mathematical issues raised by inverse problems receive scant attention in the university curriculum. This book aims to remedy this state of affairs by supplying an accessible introduction, at a modest mathematical level, to the alluring field of inverse problems. Many models of inverse problems from science and engineering are dealt with and nearly a hundred exercises, of varying difficulty, involving mathematical analysis, numerical treatment, or modelling of inverse problems, are provided. The main themes of the book are: causation problem modeled as integral equations; model identification problems, posed as coefficient determination problems in differential equations; the functional analytic framework for inverse problems; and a survey of the principal numerical methods for inverse problems. An extensive annotated bibliography furnishes leads on the history of inverse problems and a guide to the frontiers of current research.


Solving Problems in Mathematical Analysis, Part II

Solving Problems in Mathematical Analysis, Part II

Author: Tomasz Radożycki

Publisher: Springer Nature

Published: 2020-02-22

Total Pages: 389

ISBN-13: 3030368483

DOWNLOAD EBOOK

This textbook offers an extensive list of completely solved problems in mathematical analysis. This second of three volumes covers definite, improper and multidimensional integrals, functions of several variables, differential equations, and more. The series contains the material corresponding to the first three or four semesters of a course in Mathematical Analysis. Based on the author’s years of teaching experience, this work stands out by providing detailed solutions (often several pages long) to the problems. The basic premise of the book is that no topic should be left unexplained, and no question that could realistically arise while studying the solutions should remain unanswered. The style and format are straightforward and accessible. In addition, each chapter includes exercises for students to work on independently. Answers are provided to all problems, allowing students to check their work. Though chiefly intended for early undergraduate students of Mathematics, Physics and Engineering, the book will also appeal to students from other areas with an interest in Mathematical Analysis, either as supplementary reading or for independent study.