Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics

Mathematical Analysis of Deterministic and Stochastic Problems in Complex Media Electromagnetics

Author: G. F. Roach

Publisher: Princeton University Press

Published: 2012-03-04

Total Pages: 399

ISBN-13: 0691142173

DOWNLOAD EBOOK

Electromagnetic complex media are artificial materials that affect the propagation of electromagnetic waves in surprising ways not usually seen in nature. Because of their wide range of important applications, these materials have been intensely studied over the past twenty-five years, mainly from the perspectives of physics and engineering. But a body of rigorous mathematical theory has also gradually developed, and this is the first book to present that theory. Designed for researchers and advanced graduate students in applied mathematics, electrical engineering, and physics, this book introduces the electromagnetics of complex media through a systematic, state-of-the-art account of their mathematical theory. The book combines the study of well posedness, homogenization, and controllability of Maxwell equations complemented with constitutive relations describing complex media. The book treats deterministic and stochastic problems both in the frequency and time domains. It also covers computational aspects and scattering problems, among other important topics. Detailed appendices make the book self-contained in terms of mathematical prerequisites, and accessible to engineers and physicists as well as mathematicians.


Adventures in Contemporary Electromagnetic Theory

Adventures in Contemporary Electromagnetic Theory

Author: Tom G. Mackay

Publisher: Springer Nature

Published: 2023-07-31

Total Pages: 548

ISBN-13: 3031246179

DOWNLOAD EBOOK

This book describes the most recent advances in electromagnetic theory, motivated and partly informed by developments in engineering science and nanotechnology. The collection of chapters provided in this edited book, authored by leading experts in the field, offers a bird’s eye view of recent progress in electromagnetic theory, spanning a wide range of topics of current interest, ranging from fundamental issues to applications.​


Numerical Approximations of Stochastic Maxwell Equations

Numerical Approximations of Stochastic Maxwell Equations

Author: Chuchu Chen

Publisher: Springer Nature

Published: 2024-01-04

Total Pages: 293

ISBN-13: 9819966868

DOWNLOAD EBOOK

The stochastic Maxwell equations play an essential role in many fields, including fluctuational electrodynamics, statistical radiophysics, integrated circuits, and stochastic inverse problems. This book provides some recent advances in the investigation of numerical approximations of the stochastic Maxwell equations via structure-preserving algorithms. It presents an accessible overview of the construction and analysis of structure-preserving algorithms with an emphasis on the preservation of geometric structures, physical properties, and asymptotic behaviors of the stochastic Maxwell equations. A friendly introduction to the simulation of the stochastic Maxwell equations with some structure-preserving algorithms is provided using MATLAB for the reader’s convenience. The objects considered in this book are related to several fascinating mathematical fields: numerical analysis, stochastic analysis, (multi-)symplectic geometry, large deviations principle, ergodic theory, partial differential equation, probability theory, etc. This book will appeal to researchers who are interested in these topics.


Mathematical Methods in Elasticity Imaging

Mathematical Methods in Elasticity Imaging

Author: Habib Ammari

Publisher: Princeton University Press

Published: 2015-04-06

Total Pages: 240

ISBN-13: 0691165319

DOWNLOAD EBOOK

This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative–based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic structures, the book opens possibilities for a mathematical and numerical framework for elasticity imaging of nanoparticles and cellular structures.


Hidden Markov Processes

Hidden Markov Processes

Author: M. Vidyasagar

Publisher: Princeton University Press

Published: 2014-08-24

Total Pages: 303

ISBN-13: 1400850517

DOWNLOAD EBOOK

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. The book starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron-Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum-Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. The book also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.


Topics in Quaternion Linear Algebra

Topics in Quaternion Linear Algebra

Author: Leiba Rodman

Publisher: Princeton University Press

Published: 2014-08-24

Total Pages: 379

ISBN-13: 1400852749

DOWNLOAD EBOOK

Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations. Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.


Mathematical Foundations of Computational Electromagnetism

Mathematical Foundations of Computational Electromagnetism

Author: Franck Assous

Publisher: Springer

Published: 2018-06-09

Total Pages: 460

ISBN-13: 3319708422

DOWNLOAD EBOOK

This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well‐posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell’s equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell’s equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.


Statistical Inference via Convex Optimization

Statistical Inference via Convex Optimization

Author: Anatoli Juditsky

Publisher: Princeton University Press

Published: 2020-04-07

Total Pages: 656

ISBN-13: 0691200319

DOWNLOAD EBOOK

This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.


Rays, Waves, and Scattering

Rays, Waves, and Scattering

Author: John Adam

Publisher: Princeton University Press

Published: 2017-05-30

Total Pages: 616

ISBN-13: 0691148376

DOWNLOAD EBOOK

This one-of-a-kind book presents many of the mathematical concepts, structures, and techniques used in the study of rays, waves, and scattering. Panoramic in scope, it includes discussions of how ocean waves are refracted around islands and underwater ridges, how seismic waves are refracted in the earth's interior, how atmospheric waves are scattered by mountains and ridges, how the scattering of light waves produces the blue sky, and meteorological phenomena such as rainbows and coronas. Rays, Waves, and Scattering is a valuable resource for practitioners, graduate students, and advanced undergraduates in applied mathematics, theoretical physics, and engineering. Bridging the gap between advanced treatments of the subject written for specialists and less mathematical books aimed at beginners, this unique mathematical compendium features problems and exercises throughout that are geared to various levels of sophistication, covering everything from Ptolemy's theorem to Airy integrals (as well as more technical material), and several informative appendixes. Provides a panoramic look at wave motion in many different contexts Features problems and exercises throughout Includes numerous appendixes, some on topics not often covered An ideal reference book for practitioners Can also serve as a supplemental text in classical applied mathematics, particularly wave theory and mathematical methods in physics and engineering Accessible to anyone with a strong background in ordinary differential equations, partial differential equations, and functions of a complex variable


Formal Verification of Control System Software

Formal Verification of Control System Software

Author: Pierre-Loïc Garoche

Publisher: Princeton University Press

Published: 2019-05-14

Total Pages: 231

ISBN-13: 0691189587

DOWNLOAD EBOOK

An essential introduction to the analysis and verification of control system software The verification of control system software is critical to a host of technologies and industries, from aeronautics and medical technology to the cars we drive. The failure of controller software can cost people their lives. In this authoritative and accessible book, Pierre-Loïc Garoche provides control engineers and computer scientists with an indispensable introduction to the formal techniques for analyzing and verifying this important class of software. Too often, control engineers are unaware of the issues surrounding the verification of software, while computer scientists tend to be unfamiliar with the specificities of controller software. Garoche provides a unified approach that is geared to graduate students in both fields, covering formal verification methods as well as the design and verification of controllers. He presents a wealth of new verification techniques for performing exhaustive analysis of controller software. These include new means to compute nonlinear invariants, the use of convex optimization tools, and methods for dealing with numerical imprecisions such as floating point computations occurring in the analyzed software. As the autonomy of critical systems continues to increase—as evidenced by autonomous cars, drones, and satellites and landers—the numerical functions in these systems are growing ever more advanced. The techniques presented here are essential to support the formal analysis of the controller software being used in these new and emerging technologies.