Mathematics in India has a long and impressive history. Presented in chronological order, this book discusses mathematical contributions of Pre-Modern Indian Mathematicians from the Vedic period (800 B.C.) to the 17th Century of the Christian era. These contributions range across the fields of Algebra, Geometry and Trigonometry. The book presents the discussions in a chronological order, covering all the contributions of one Pre-Modern Indian Mathematician to the next. It begins with an overview and summary of previous work done on this subject before exploring specific contributions in exemplary technical detail. This book provides a comprehensive examination of pre-Modern Indian mathematical contributions that will be valuable to mathematicians and mathematical historians. - Contains more than 160 original Sanskrit verses with English translations giving historical context to the contributions - Presents the various proofs step by step to help readers understand - Uses modern, current notations and symbols to develop the calculations and proofs
Based on extensive research in Sanskrit sources, Mathematics in India chronicles the development of mathematical techniques and texts in South Asia from antiquity to the early modern period. Kim Plofker reexamines the few facts about Indian mathematics that have become common knowledge--such as the Indian origin of Arabic numerals--and she sets them in a larger textual and cultural framework. The book details aspects of the subject that have been largely passed over in the past, including the relationships between Indian mathematics and astronomy, and their cross-fertilizations with Islamic scientific traditions. Plofker shows that Indian mathematics appears not as a disconnected set of discoveries, but as a lively, diverse, yet strongly unified discipline, intimately linked to other Indian forms of learning. Far more than in other areas of the history of mathematics, the literature on Indian mathematics reveals huge discrepancies between what researchers generally agree on and what general readers pick up from popular ideas. This book explains with candor the chief controversies causing these discrepancies--both the flaws in many popular claims, and the uncertainties underlying many scholarly conclusions. Supplementing the main narrative are biographical resources for dozens of Indian mathematicians; a guide to key features of Sanskrit for the non-Indologist; and illustrations of manuscripts, inscriptions, and artifacts. Mathematics in India provides a rich and complex understanding of the Indian mathematical tradition. **Author's note: The concept of "computational positivism" in Indian mathematical science, mentioned on p. 120, is due to Prof. Roddam Narasimha and is explored in more detail in some of his works, including "The Indian half of Needham's question: some thoughts on axioms, models, algorithms, and computational positivism" (Interdisciplinary Science Reviews 28, 2003, 1-13).
In 1150 AD, Bhaskaracarya (b. 1114 AD), renowned mathematician and astronomer of Vedic tradition composed Lilavati as the first part of his larger work called Siddhanta Siromani, a comprehensive exposition of arithmetic, algebra, geometry, mensuration, number theory and related topics. Lilavati has been used as a standard textbook for about 800 years. This lucid, scholarly and literary presentation has been translated into several languages of the world. Bhaskaracarya himself never gave any derivations of his formulae. N.H. Phadke (1902-1973) worked hard to construct proofs of several mathematical methods and formulae given in original Lilavati. The present work is an enlargement of his Marathi work and attempts a thorough mathematical explanation of definitions, formulae, short cuts and methodology as intended by Bhaskara. Stitches are followed by literal translations so that the reader can enjoy and appreciate the beauty of accurate and musical presentation in Lilavati. The book is useful to school going children, sophomores, teachers, scholars, historians and those working for cause of mathematics.
Mathematics Wizard Srinivasa Ramanujan is a biographical work that explores the life and achievements of the extraordinary mathematician, Srinivasa Ramanujan. Written by Narendra Govil and Bhu Dev Sharma, the book delves into the remarkable journey of Ramanujan, who made groundbreaking contributions to the field of mathematics despite facing numerous challenges. Key Aspects of The Book “Mathematics Wizard Srinivasa Ramanujan”: Exceptional Mathematical Mind: The book showcases Ramanujan's exceptional mathematical abilities and his innate talent for numbers. It highlights his prodigious intuition and the unique insights he brought to various branches of mathematics, such as number theory, infinite series, and modular forms. Struggles and Determination: The book explores the challenges Ramanujan faced throughout his life, including his limited formal education and financial difficulties. It emphasizes his unwavering determination and relentless pursuit of knowledge, as he continued to explore and develop his mathematical ideas despite the obstacles he encountered. Collaborations and Recognition: The book may highlight Ramanujan's collaborations with eminent mathematicians, such as G.H. Hardy, and the impact of their work together. It may also delve into the recognition Ramanujan eventually received for his groundbreaking contributions to mathematics, both during his lifetime and posthumously. Overall, Mathematics Wizard Srinivasa Ramanujan offers readers an inspiring glimpse into the life of a mathematical genius who defied the odds and left an indelible mark on the field of mathematics. It portrays Ramanujan's incredible talents, perseverance, and enduring legacy that continues to inspire mathematicians and enthusiasts around the world. Narendra Govil and Bhu Dev Sharma celebrate the genius of Srinivasa Ramanujan, one of the most influential Indian mathematicians of all time. His remarkable mathematical discoveries and insights revolutionized the field of mathematics and number theory, and his mathematical brilliance, contributions, and theories continue to be studied and appreciated to this day. From his groundbreaking work in number theory to his intricate mathematical puzzles and equations, Ramanujan's mathematical concepts and principles have shaped the way we think about mathematics. His mathematical achievements, innovation, and legacy have given us new ways of exploring and understanding the world with mathematical thinking. Whether it's his revolutionary mathematical theories or his revolutionary mathematical exploration, Ramanujan's work will continue to be celebrated for generations to come.
This book traces the first faltering steps taken in the mathematical theorization of infinity which marks the emergence of modern mathematics. It analyzes the part played by Indian mathematics through the Kerala conduit, which is an important but neglected part of the history of mathematics.
Making up Numbers: A History of Invention in Mathematics offers a detailed but accessible account of a wide range of mathematical ideas. Starting with elementary concepts, it leads the reader towards aspects of current mathematical research. The book explains how conceptual hurdles in the development of numbers and number systems were overcome in the course of history, from Babylon to Classical Greece, from the Middle Ages to the Renaissance, and so to the nineteenth and twentieth centuries. The narrative moves from the Pythagorean insistence on positive multiples to the gradual acceptance of negative numbers, irrationals and complex numbers as essential tools in quantitative analysis. Within this chronological framework, chapters are organised thematically, covering a variety of topics and contexts: writing and solving equations, geometric construction, coordinates and complex numbers, perceptions of ‘infinity’ and its permissible uses in mathematics, number systems, and evolving views of the role of axioms. Through this approach, the author demonstrates that changes in our understanding of numbers have often relied on the breaking of long-held conventions to make way for new inventions at once providing greater clarity and widening mathematical horizons. Viewed from this historical perspective, mathematical abstraction emerges as neither mysterious nor immutable, but as a contingent, developing human activity. Making up Numbers will be of great interest to undergraduate and A-level students of mathematics, as well as secondary school teachers of the subject. In virtue of its detailed treatment of mathematical ideas, it will be of value to anyone seeking to learn more about the development of the subject.
This radical, profoundly scholarly book explores the purposes and nature of proof in a range of historical settings. It overturns the view that the first mathematical proofs were in Greek geometry and rested on the logical insights of Aristotle by showing how much of that view is an artefact of nineteenth-century historical scholarship. It documents the existence of proofs in ancient mathematical writings about numbers and shows that practitioners of mathematics in Mesopotamian, Chinese and Indian cultures knew how to prove the correctness of algorithms, which are much more prominent outside the limited range of surviving classical Greek texts that historians have taken as the paradigm of ancient mathematics. It opens the way to providing the first comprehensive, textually based history of proof.
Tantrasangraha, composed by the renowned Kerala astronomer Nīlakantha Somayājī (c.1444-1545 AD) ranks along with Āryabhatīya of Āryabhata and Siddhāntaśiromani of Bhāskarācārya as one of the major works which significantly influenced further work on astronomy in India. One of the distinguishing features is the introduction of a major revision of the traditional Indian planetary model. Nīlakantha arrived at a unified theory of planetary latitudes and a better formulation of the equation of centre for the interior planets (Mercury and Venus) than was previously available. In preparing the translation and explanatory notes, K. Ramasubramanian and M. S. Sriram have used authentic Sanskrit editions of Tantrasangraha by Surand Kunjan Pillai and K V Sarma. All verses have been translated into English, which have been supplemented with detailed explanations including all necessary mathematical relations, illustrative examples, figures and tables using modern mathematical notation.
The discovery of infinite products by Wallis and infinite series by Newton marked the beginning of the modern mathematical era. It allowed Newton to solve the problem of finding areas under curves defined by algebraic equations, an achievement beyond the scope of the earlier methods of Torricelli, Fermat and Pascal. While Newton and his contemporaries, including Leibniz and the Bernoullis, concentrated on mathematical analysis and physics, Euler's prodigious accomplishments demonstrated that series and products could also address problems in algebra, combinatorics and number theory. In this book, Ranjan Roy describes many facets of the discovery and use of infinite series and products as worked out by their originators, including mathematicians from Asia, Europe and America. The text provides context and motivation for these discoveries, with many detailed proofs, offering a valuable perspective on modern mathematics. Mathematicians, mathematics students, physicists and engineers will all read this book with benefit and enjoyment.