Mathematica for Physics

Mathematica for Physics

Author: Robert L. Zimmerman

Publisher: Addison-Wesley

Published: 2002

Total Pages: 682

ISBN-13:

DOWNLOAD EBOOK

An appropriate supplement for any undergraduate or graduate course in physics, Mathematica ̈ for Physics uses the power of Mathematica ̈ to visualize and display physics concepts and generate numerical and graphical solutions to physics problems. Throughout the book, the complexity of both physics and Mathematica ̈ is systematically extended to broaden the range of problems that can be solved.


Introduction to Mathematica® for Physicists

Introduction to Mathematica® for Physicists

Author: Andrey Grozin

Publisher: Springer Science & Business Media

Published: 2013-08-26

Total Pages: 215

ISBN-13: 3319008943

DOWNLOAD EBOOK

The basics of computer algebra and the language of Mathematica are described in this textbook, leading towards an understanding of Mathematica that allows the reader to solve problems in physics, mathematics, and chemistry. Mathematica is the most widely used system for doing mathematical calculations by computer, including symbolic and numeric calculations and graphics. It is used in physics and other branches of science, in mathematics, education and many other areas.


Mathematica for Theoretical Physics

Mathematica for Theoretical Physics

Author: Gerd Baumann

Publisher: Springer Science & Business Media

Published: 2006-01-16

Total Pages: 407

ISBN-13: 0387251138

DOWNLOAD EBOOK

Class-tested textbook that shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Delivers dozens of fully interactive examples for learning and implementation, constants and formulae can readily be altered and adapted for the user’s purposes. New edition offers enlarged two-volume format suitable to courses in mechanics and electrodynamics, while offering dozens of new examples and a more rewarding interactive learning environment.


Symmetry Theory in Molecular Physics with Mathematica

Symmetry Theory in Molecular Physics with Mathematica

Author: William McClain

Publisher: Springer Science & Business Media

Published: 2010-03-12

Total Pages: 672

ISBN-13: 0387734708

DOWNLOAD EBOOK

Prof. McClain has, quite simply, produced a new kind of tutorial book. It is written using the logic engine Mathematica, which permits concrete exploration and development of every concept involved in Symmetry Theory. It is aimed at students of chemistry and molecular physics who need to know mathematical group theory and its applications, either for their own research or for understanding the language and concepts of their field. The book begins with the most elementary symmetry concepts, then presents mathematical group theory, and finally the projection operators that flow from the Great Orthogonality are automated and applied to chemical and spectroscopic problems.


Using Mathematica for Quantum Mechanics

Using Mathematica for Quantum Mechanics

Author: Roman Schmied

Publisher: Springer Nature

Published: 2019-09-28

Total Pages: 193

ISBN-13: 9811375887

DOWNLOAD EBOOK

This book revisits many of the problems encountered in introductory quantum mechanics, focusing on computer implementations for finding and visualizing analytical and numerical solutions. It subsequently uses these implementations as building blocks to solve more complex problems, such as coherent laser-driven dynamics in the Rubidium hyperfine structure or the Rashba interaction of an electron moving in 2D. The simulations are highlighted using the programming language Mathematica. No prior knowledge of Mathematica is needed; alternatives, such as Matlab, Python, or Maple, can also be used.


Essentials of Mathematica

Essentials of Mathematica

Author: Nino Boccara

Publisher: Springer Science & Business Media

Published: 2007-10-17

Total Pages: 550

ISBN-13: 0387495142

DOWNLOAD EBOOK

This book teaches how to use Mathematica to solve a wide variety of problems in mathematics and physics. It is based on the lecture notes of a course taught at the University of Illinois at Chicago to advanced undergrad and graduate students. The book is illustrated with many detailed examples that require the student to construct meticulous, step-by-step, easy to read Mathematica programs. The first part, in which the reader learns how to use a variety of Mathematica commands, contains examples, not long explanations; the second part contains attractive applications.


Nonlinear Physics with Mathematica for Scientists and Engineers

Nonlinear Physics with Mathematica for Scientists and Engineers

Author: Richard H. Enns

Publisher: Springer Science & Business Media

Published: 2001-06-26

Total Pages: 720

ISBN-13: 9780817642235

DOWNLOAD EBOOK

Nonlinear physics continues to be an area of dynamic modern research, with applications to physics, engineering, chemistry, mathematics, computer science, biology, medicine and economics. In this text extensive use is made of the Mathematica computer algebra system. No prior knowledge of Mathematica or programming is assumed. This book includes 33 experimental activities that are designed to deepen and broaden the reader's understanding of nonlinear physics. These activities are correlated with Part I, the theoretical framework of the text.


A Mathematica Primer for Physicists

A Mathematica Primer for Physicists

Author: Jim Napolitano

Publisher: CRC Press

Published: 2018-03-22

Total Pages: 200

ISBN-13: 1351979213

DOWNLOAD EBOOK

"...an excellent text for either a short course or self-study... Professor Napolitano has figured out what students really need, and found a way to deliver it... I have found everything he writes to be worthy of my serious attention..." —Peter D. Persans, Professor of Physics and Director, Center for Integrated Electronics, Rensselaer Polytechnic Institute Learn how to use Mathematica quickly for basic problems in physics. The author introduces all the key techniques and then shows how they’re applied using common examples. Chapters cover elementary mathematics concepts, differential and integral calculus, differential equations, vectors and matrices, data analysis, random number generation, animation, and visualization. Written in an appealing, conversational style Presents important concepts within the framework of Mathematics Gives examples from frequently encountered physics problems Explains problem-solving in a step-by-step fashion Jim Napolitano is professor and chair in the Department of Physics at Temple University. He is the author of other textbooks, including co-author with Alistair Rae of Quantum Mechanics, Sixth Edition, also published by Taylor & Francis / CRC Press.


Mathematics, Physics & Chemistry with the Wolfram Language

Mathematics, Physics & Chemistry with the Wolfram Language

Author: S M Blinder

Publisher:

Published: 2022-03-21

Total Pages: 0

ISBN-13: 9789811292255

DOWNLOAD EBOOK

The Wolfram language is the programming language of Mathematica, used increasingly by scientists due to its ease of learning and user-friendliness. This book focuses on applications of the Wolfram language to applied mathematics, physics and chemistry. Topics discussed are broad and comprehensive, from differential equations and special functions to fractals and chess, from electromagnetism and optics to relativity and black holes. There is also extensive coverage of quantum theory and quantum chemistry, and the book is peppered with more than 200 color graphics to aid visualization of these concepts. The program codes are provided online as Mathematica notebooks, allowing readers to modify them and manipulate the graphics in real time. This book should be a valuable resource for researchers, educators and students in science and computing who can profit from a more interactive form of instruction.


Classical Mechanics with Mathematica®

Classical Mechanics with Mathematica®

Author: Antonio Romano

Publisher: Springer

Published: 2018-05-29

Total Pages: 644

ISBN-13: 3319775952

DOWNLOAD EBOOK

This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments. The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others. This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional continuous systems, and variational calculus with applications. Several Mathematica® notebooks are available to download that will further aid students in their understanding of some of the more difficult material. Unique in its scope of coverage and method of approach, Classical Mechanics with Mathematica® will be useful resource for graduate students and advanced undergraduates in applied mathematics and physics who hope to gain a deeper understanding of mechanics.