$\mathcal {R}$-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type

$\mathcal {R}$-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type

Author: Robert Denk

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 130

ISBN-13: 0821833782

DOWNLOAD EBOOK

The property of maximal $L_p$-regularity for parabolic evolution equations is investigated via the concept of $\mathcal R$-sectorial operators and operator-valued Fourier multipliers. As application, we consider the $L_q$-realization of an elliptic boundary value problem of order $2m$ with operator-valued coefficients subject to general boundary conditions. We show that there is maximal $L_p$-$L_q$-regularity for the solution of the associated Cauchy problem provided the top order coefficients are bounded and uniformly continuous.


Mathematical Analysis of the Navier-Stokes Equations

Mathematical Analysis of the Navier-Stokes Equations

Author: Matthias Hieber

Publisher: Springer Nature

Published: 2020-04-28

Total Pages: 471

ISBN-13: 3030362264

DOWNLOAD EBOOK

This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.


Mean Field Games

Mean Field Games

Author: Yves Achdou

Publisher: Springer Nature

Published: 2021-01-19

Total Pages: 316

ISBN-13: 3030598373

DOWNLOAD EBOOK

This volume provides an introduction to the theory of Mean Field Games, suggested by J.-M. Lasry and P.-L. Lions in 2006 as a mean-field model for Nash equilibria in the strategic interaction of a large number of agents. Besides giving an accessible presentation of the main features of mean-field game theory, the volume offers an overview of recent developments which explore several important directions: from partial differential equations to stochastic analysis, from the calculus of variations to modeling and aspects related to numerical methods. Arising from the CIME Summer School "Mean Field Games" held in Cetraro in 2019, this book collects together lecture notes prepared by Y. Achdou (with M. Laurière), P. Cardaliaguet, F. Delarue, A. Porretta and F. Santambrogio. These notes will be valuable for researchers and advanced graduate students who wish to approach this theory and explore its connections with several different fields in mathematics.


Singular Limits in Thermodynamics of Viscous Fluids

Singular Limits in Thermodynamics of Viscous Fluids

Author: Eduard Feireisl

Publisher: Springer Science & Business Media

Published: 2009-03-28

Total Pages: 411

ISBN-13: 3764388439

DOWNLOAD EBOOK

Many interesting problems in mathematical fluid dynamics involve the behavior of solutions of nonlinear systems of partial differential equations as certain parameters vanish or become infinite. Frequently the limiting solution, provided the limit exists, satisfies a qualitatively different system of differential equations. This book is designed as an introduction to the problems involving singular limits based on the concept of weak or variational solutions. The primitive system consists of a complete system of partial differential equations describing the time evolution of the three basic state variables: the density, the velocity, and the absolute temperature associated to a fluid, which is supposed to be compressible, viscous, and heat conducting. It can be represented by the Navier-Stokes-Fourier-system that combines Newton's rheological law for the viscous stress and Fourier's law of heat conduction for the internal energy flux. As a summary, this book studies singular limits of weak solutions to the system governing the flow of thermally conducting compressible viscous fluids.


Convergence and Summability of Fourier Transforms and Hardy Spaces

Convergence and Summability of Fourier Transforms and Hardy Spaces

Author: Ferenc Weisz

Publisher: Birkhäuser

Published: 2017-12-27

Total Pages: 446

ISBN-13: 3319568140

DOWNLOAD EBOOK

This book investigates the convergence and summability of both one-dimensional and multi-dimensional Fourier transforms, as well as the theory of Hardy spaces. To do so, it studies a general summability method known as theta-summation, which encompasses all the well-known summability methods, such as the Fejér, Riesz, Weierstrass, Abel, Picard, Bessel and Rogosinski summations. Following on the classic books by Bary (1964) and Zygmund (1968), this is the first book that considers strong summability introduced by current methodology. A further unique aspect is that the Lebesgue points are also studied in the theory of multi-dimensional summability. In addition to classical results, results from the past 20-30 years – normally only found in scattered research papers – are also gathered and discussed, offering readers a convenient “one-stop” source to support their work. As such, the book will be useful for researchers, graduate and postgraduate students alike.


Functional Analytic Methods for Evolution Equations

Functional Analytic Methods for Evolution Equations

Author: Giuseppe Da Prato

Publisher: Springer

Published: 2004-08-30

Total Pages: 478

ISBN-13: 3540446532

DOWNLOAD EBOOK

This book consists of five introductory contributions by leading mathematicians on the functional analytic treatment of evolutions equations. In particular the contributions deal with Markov semigroups, maximal L^p-regularity, optimal control problems for boundary and point control systems, parabolic moving boundary problems and parabolic nonautonomous evolution equations. The book is addressed to PhD students, young researchers and mathematicians doing research in one of the above topics.


Quantum Gravity in 2+1 Dimensions

Quantum Gravity in 2+1 Dimensions

Author: Steven Carlip

Publisher: Cambridge University Press

Published: 2003-12-04

Total Pages: 296

ISBN-13: 9780521545884

DOWNLOAD EBOOK

The first comprehensive survey of (2+1)-dimensional quantum gravity - for graduate students and researchers.


Moving Interfaces and Quasilinear Parabolic Evolution Equations

Moving Interfaces and Quasilinear Parabolic Evolution Equations

Author: Jan Prüss

Publisher: Birkhäuser

Published: 2016-07-25

Total Pages: 618

ISBN-13: 3319276980

DOWNLOAD EBOOK

In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.


Particles in Flows

Particles in Flows

Author: Tomáš Bodnár

Publisher: Birkhäuser

Published: 2017-09-30

Total Pages: 526

ISBN-13: 3319602829

DOWNLOAD EBOOK

This book aims to face particles in flows from many different, but essentially interconnected sides and points of view. Thus the selection of authors and topics represented in the chapters, ranges from deep mathematical analysis of the associated models, through the techniques of their numerical solution, towards real applications and physical implications. The scope and structure of the book as well as the selection of authors was motivated by the very successful summer course and workshop "Particles in Flows'' that was held in Prague in the August of 2014. This meeting revealed the need for a book dealing with this specific and challenging multidisciplinary subject, i.e. particles in industrial, environmental and biomedical flows and the combination of fluid mechanics, solid body mechanics with various aspects of specific applications.