The author attempts to explain why math is really very easy. He also tries to dispel the 'Black Magic' taught in schools today. A fresh look at an old subject that is bound to challenge you.
Easy-to-use, comprehensive coverage of all essential first grade math topics. This scripted, open-and-go program from math educator Kate Snow will give you the tools you need to teach math with confidence—even if you’ve never taught math before. Short, engaging, and hands-on lessons will help your child develop a strong understanding of math, step by step. Counting, comparing, and writing numbers to 100 Addition and subtraction facts to 20 Addition and subtraction word problems Beginning place-value and mental math Shapes, money, time, and measurement
This text for a second course in linear algebra, aimed at math majors and graduates, adopts a novel approach by banishing determinants to the end of the book and focusing on understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space has an eigenvalue. The book starts by discussing vector spaces, linear independence, span, basics, and dimension. Students are introduced to inner-product spaces in the first half of the book and shortly thereafter to the finite- dimensional spectral theorem. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition features new chapters on diagonal matrices, on linear functionals and adjoints, and on the spectral theorem; some sections, such as those on self-adjoint and normal operators, have been entirely rewritten; and hundreds of minor improvements have been made throughout the text.
Just as athletes stretch their muscles before every game and musicians play scales to keep their technique in tune, mathematical thinkers and problem solvers can benefit from daily warm-up exercises. Jessica Shumway has developed a series of routines designed to help young students internalize and deepen their facility with numbers. The daily use of these quick five-, ten-, or fifteen-minute experiences at the beginning of math class will help build students' number sense. Students with strong number sense understand numbers, ways to represent numbers, relationships among numbers, and number systems. They make reasonable estimates, compute fluently, use reasoning strategies (e.g., relate operations, such as addition and subtraction, to each other), and use visual models based on their number sense to solve problems. Students who never develop strong number sense will struggle with nearly all mathematical strands, from measurement and geometry to data and equations. In Number Sense Routines, Jessica shows that number sense can be taught to all students. Dozens of classroom examples -- including conversations among students engaging in number sense routines -- illustrate how the routines work, how children's number sense develops, and how to implement responsive routines. Additionally, teachers will gain a deeper understanding of the underlying math -- the big ideas, skills, and strategies children learn as they develop numerical literacy.
Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Algebra I For Dummies, 2nd Edition (9781119293576) was previously published as Algebra I For Dummies, 2nd Edition (9780470559642). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product. Factor fearlessly, conquer the quadratic formula, and solve linear equations There's no doubt that algebra can be easy to some while extremely challenging to others. If you're vexed by variables, Algebra I For Dummies, 2nd Edition provides the plain-English, easy-to-follow guidance you need to get the right solution every time! Now with 25% new and revised content, this easy-to-understand reference not only explains algebra in terms you can understand, but it also gives you the necessary tools to solve complex problems with confidence. You'll understand how to factor fearlessly, conquer the quadratic formula, and solve linear equations. Includes revised and updated examples and practice problems Provides explanations and practical examples that mirror today's teaching methods Other titles by Sterling: Algebra II For Dummies and Algebra Workbook For Dummies Whether you're currently enrolled in a high school or college algebra course or are just looking to brush-up your skills, Algebra I For Dummies, 2nd Edition gives you friendly and comprehensible guidance on this often difficult-to-grasp subject.