Material Science and Metallurgy is presented in a user-friendly language and the diagrams give a clear view and concept. Solved problems, multiple choice questions and review questions are also integral part of the book. The contents of the book ar
For many years, various editions of Smallman's Modern Physical Metallurgy have served throughout the world as a standard undergraduate textbook on metals and alloys. In 1995, it was rewritten and enlarged to encompass the related subject of materials science and engineering and appeared under the title Metals & Materials: Science, Processes, Applications offering a comprehensive amount of a much wider range of engineering materials. Coverage ranged from pure elements to superalloys, from glasses to engineering ceramics, and from everyday plastics to in situ composites, Amongst other favourable reviews, Professor Bhadeshia of Cambridge University commented: "Given the amount of work that has obviously gone into this book and its extensive comments, it is very attractively priced. It is an excellent book to be recommend strongly for purchase by undergraduates in materials-related subjects, who should benefit greatly by owning a text containing so much knowledge."The book now includes new chapters on materials for sports equipment (golf, tennis, bicycles, skiing, etc.) and biomaterials (replacement joints, heart valves, tissue repair, etc.) - two of the most exciting and rewarding areas in current materials research and development. As in its predecessor, numerous examples are given of the ways in which knowledge of the relation between fine structure and properties has made it possible to optimise the service behaviour of traditional engineering materials and to develop completely new and exciting classes of materials. Special consideration is given to the crucial processing stage that enables materials to be produced as marketable commodities. Whilst attempting to produce a useful and relatively concise survey of key materials and their interrelationships, the authors have tried to make the subject accessible to a wide range of readers, to provide insights into specialised methods of examination and to convey the excitement of the atmosphere in which new materials are conceived and developed.
Material Science and Metallurgy is designed to cater to the needs of first-year undergraduate mechanical engineering students. This book covers theory extensively, including an extensive examination of powder metallurgy and ceramics, accompanied by useful diagrams and derivations.
Modern Physical Metallurgy, Fourth Edition explains the fundamental principles of physical metallurgy and their application, allowing its readers to understand the many important technological phenomena of the field. The book covers topics such as the molecular properties of metals; the different physical methods of metals and alloys; and the structure of alloys. Also covered are topics such as the deformation of metals and alloys; phase transformations; and related processes such as creep, fatigue, fracture, oxidation, and corrosion. The text is recommended for metallurgists, chemists, and engineers who would like to know more about the principles behind metallurgy and its application in different fields.
This book successfully connects archaeology and archaeometallurgy with geoscience and metallurgy. It addresses topics concerning ore deposits, archaeological field evidence of early metal production, and basic chemical-physical principles, as well as experimental ethnographic works on a low handicraft base and artisanal metal production to help readers better understand what happened in antiquity. The book is chiefly intended for scholars and students engaged in interdisciplinary work.
Since the 1920s, modern powder metallurgy has been used to produce a wide range of structural powder metallurgy components, self-lubricating bearings, and cutting tools. The conventional method involves the production of metal powders and the manufacture of useful objects from such powders by die compaction and sintering. Powder injection molding permits the production of stronger, more uniform, and more complex powder metallurgy parts. A detailed discussion of powder metallurgy materials and products is given in this book. Worked examples, exercises, questions, and problems are included in each chapter.
This treatise on Engineering Materials and Metallurgy contains comprehensive treatment of the matter in simple,lucid and direct language and envelopes a large number of figures which reinforce the text in the most efficient and effective way.The book comprise five chapters(excluding basic concepts)in all and fully and exhaustively covers the syllabus in the above mentioned subject of 4th.Semester Mechnical,Production,Automobile Engineering and 2nd semester Mechnical disciplines of Anna University.
This well-established and widely adopted book, now in its Sixth Edition, provides a thorough analysis of the subject in an easy-to-read style. It analyzes, systematically and logically, the basic concepts and their applications to enable the students to comprehend the subject with ease. The book begins with a clear exposition of the background topics in chemical equilibrium, kinetics, atomic structure and chemical bonding. Then follows a detailed discussion on the structure of solids, crystal imperfections, phase diagrams, solid-state diffusion and phase transformations. This provides a deep insight into the structural control necessary for optimizing the various properties of materials. The mechanical properties covered include elastic, anelastic and viscoelastic behaviour, plastic deformation, creep and fracture phenomena. The next four chapters are devoted to a detailed description of electrical conduction, superconductivity, semiconductors, and magnetic and dielectric properties. The final chapter on ‘Nanomaterials’ is an important addition to the sixth edition. It describes the state-of-art developments in this new field. This eminently readable and student-friendly text not only provides a masterly analysis of all the relevant topics, but also makes them comprehensible to the students through the skillful use of well-drawn diagrams, illustrative tables, worked-out examples, and in many other ways. The book is primarily intended for undergraduate students of all branches of engineering (B.E./B.Tech.) and postgraduate students of Physics, Chemistry and Materials Science. KEY FEATURES • All relevant units and constants listed at the beginning of each chapter • A note on SI units and a full table of conversion factors at the beginning • A new chapter on ‘Nanomaterials’ describing the state-of-art information • Examples with solutions and problems with answers • About 350 multiple choice questions with answers
This fifth edition of the highly regarded family of titles that first published in 1965 is now a three-volume set and over 3,000 pages. All chapters have been revised and expanded, either by the fourth edition authors alone or jointly with new co-authors. Chapters have been added on the physical metallurgy of light alloys, the physical metallurgy of titanium alloys, atom probe field ion microscopy, computational metallurgy, and orientational imaging microscopy. The books incorporate the latest experimental research results and theoretical insights. Several thousand citations to the research and review literature are included. - Exhaustively synthesizes the pertinent, contemporary developments within physical metallurgy so scientists have authoritative information at their fingertips - Replaces existing articles and monographs with a single, complete solution - Enables metallurgists to predict changes and create novel alloys and processes