This new edition of the methods and instrumentation used in the detection of ionizing radiation has been revised and updated to reflect recent advances. It covers modern engineering practice, provides useful design information and contains an up-to-date review of the literature.
Radiation Detection: Concepts, Methods, and Devices provides a modern overview of radiation detection devices and radiation measurement methods. The book topics have been selected on the basis of the authors’ many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment. This book is designed to give the reader more than a glimpse at radiation detection devices and a few packaged equations. Rather it seeks to provide an understanding that allows the reader to choose the appropriate detection technology for a particular application, to design detectors, and to competently perform radiation measurements. The authors describe assumptions used to derive frequently encountered equations used in radiation detection and measurement, thereby providing insight when and when not to apply the many approaches used in different aspects of radiation detection. Detailed in many of the chapters are specific aspects of radiation detectors, including comprehensive reviews of the historical development and current state of each topic. Such a review necessarily entails citations to many of the important discoveries, providing a resource to find quickly additional and more detailed information. This book generally has five main themes: Physics and Electrostatics needed to Design Radiation Detectors Properties and Design of Common Radiation Detectors Description and Modeling of the Different Types of Radiation Detectors Radiation Measurements and Subsequent Analysis Introductory Electronics Used for Radiation Detectors Topics covered include atomic and nuclear physics, radiation interactions, sources of radiation, and background radiation. Detector operation is addressed with chapters on radiation counting statistics, radiation source and detector effects, electrostatics for signal generation, solid-state and semiconductor physics, background radiations, and radiation counting and spectroscopy. Detectors for gamma-rays, charged-particles, and neutrons are detailed in chapters on gas-filled, scintillator, semiconductor, thermoluminescence and optically stimulated luminescence, photographic film, and a variety of other detection devices.
This publication provides guidance and recommendations on arrangements to be made at the preparedness stage, as part of overall emergency preparedness, for the termination of a nuclear or radiological emergency and the subsequent transition from the emergency exposure situation to either a planned exposure situation or an existing exposure situation. It elaborates the prerequisites that need to be fulfilled so that responsible authorities can declare the nuclear or radiological emergency ended and it gives detailed guidance on adapting and lifting protective actions. This publication, jointly sponsored by 10 international organizations (FAO, IAEA, ICAO, ILO, IMO, INTERPOL, OECD/NEA, UN OCHA, WHO and WMO) is intended to assist Member States in the application of IAEA Safety Standards Series Nos GSR Part 3 and GSR Part 7.
"The second edition of the book Radiation Detection Systems presents variety of radiation detection systems giving readers a broad view of the state-of-the-art in the design of detectors, front-end electronics and systems offering optimized choices of the detection tools for a particular application. The new edition has been divided into two volumes. This first volume, on Sensor Materials, Systems, Technology and Characterization Measurements puts emphasis on sensor materials, detector structures, front electronics technology and their designs as well as system optimization for different applications. Also, the book include characterization measurements of the developed detection systems."--
This book offers readers an overview of some of the most recent advances in the field of advanced materials used for gamma and X-ray imaging. Coverage includes both technology and applications, with an in-depth review of the research topics from leading specialists in the field. Emphasis is on high-Z materials like CdTe, CZT and GaAs, as well as perovskite crystals, since they offer the best implementation possibilities for direct conversion X-ray detectors. Authors discuss material challenges, detector operation physics and technology and readout integrated circuits required to detect signals processes by high-Z sensors.
The second edition of a bestseller, this book presents the latest innovative research methods that help break new ground by applying patterns, reuse, and design science to research. The book relies on familiar patterns to provide the solid fundamentals of various research philosophies and techniques as touchstones that demonstrate how to innovate research methods. Filled with practical examples of applying patterns to IT research with an emphasis on reusing research activities to save time and money, this book describes design science research in relation to other information systems research paradigms such as positivist and interpretivist research.
This volume provides a broad overview of the latest achievements in scintillator development, from theory to applications, and aiming for a deeper understanding of fundamental processes, as well as the discovery and availability of components for the production of new generations of scintillation materials. It includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, and development and characterization of ionizing radiation detection equipment. The book also touches upon the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, development and applications for security, and exploration of hydrocarbons and ecological monitoring.