TMS 2011 140th Annual Meeting and Exhibition, Materials Fabrication, Properties, Characterization, and Modeling

TMS 2011 140th Annual Meeting and Exhibition, Materials Fabrication, Properties, Characterization, and Modeling

Author: The Minerals, Metals & Materials Society (TMS)

Publisher: John Wiley & Sons

Published: 2011-04-12

Total Pages: 987

ISBN-13: 1118062124

DOWNLOAD EBOOK

Presents the most up-to-date information on the state of Materials Fabrication, Properties, Characterization, and Modeling. It's a great mix of practical applied technology and hard science, which is of invaluable benefit to the global industry.


Modeling, Characterization, and Production of Nanomaterials

Modeling, Characterization, and Production of Nanomaterials

Author: Vinod Tewary

Publisher: Elsevier

Published: 2022-11-20

Total Pages: 626

ISBN-13: 0128199059

DOWNLOAD EBOOK

Nano-scale materials have unique electronic, optical, and chemical properties that make them attractive for a new generation of devices. In the second edition of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics, and Energy Applications, leading experts review the latest advances in research in the understanding, prediction, and methods of production of current and emerging nanomaterials for key applications. The chapters in the first half of the book cover applications of different modeling techniques, such as Green's function-based multiscale modeling and density functional theory, to simulate nanomaterials and their structures, properties, and devices. The chapters in the second half describe the characterization of nanomaterials using advanced material characterization techniques, such as high-resolution electron microscopy, near-field scanning microwave microscopy, confocal micro-Raman spectroscopy, thermal analysis of nanoparticles, and applications of nanomaterials in areas such as electronics, solar energy, catalysis, and sensing. The second edition includes emerging relevant nanomaterials, applications, and updated modeling and characterization techniques and new understanding of nanomaterials. Covers the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focuses on practical applications and industry needs through a solid outlining of the theoretical background Includes emerging nanomaterials and their applications in spintronics and sensing


Fundamentals of 3D Food Printing and Applications

Fundamentals of 3D Food Printing and Applications

Author: Fernanda C. Godoi

Publisher: Academic Press

Published: 2018-11-02

Total Pages: 408

ISBN-13: 012814565X

DOWNLOAD EBOOK

Fundamentals of 3D Food Printing and Applications provides an update on this emerging technology that can not only create complex edible shapes, but also enable the alteration of food texture and nutritional content required by specific diets. This book discusses 3D food printing technologies and their working mechanisms within a broad spectrum of application areas, including, but not limited to, the development of soft foods and confectionary designs. It provides a unique and contemporary guide to help correlate supply materials (edible inks) and the technologies (e.g., extrusion and laser based) used during the construction of computer-aided 3D shapes. Users will find a great reference that will help food engineers and research leaders in food science understand the characteristics of 3D food printing technologies and edible inks. - Details existing 3D food printing techniques, with an in-depth discussion on the mechanisms of formation of self-supporting layers - Includes the effects of flow behaviour and viscoelastic properties of printing materials - Presents strategies to enhance printability, such as the incorporation of hydrocolloids and lubricant enhancers - 3D printing features of a range of food materials, including cereal based, insect enriched, fruits and vegetables, chocolate and dairy ingredients - Business development for chocolate printing and the prospects of 3D food printing at home for domestic applications - Prosumer-driven 3D food printing - Safety and labelling of 3D printed food


Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures

Author: Eui-Hyeok Yang

Publisher: Elsevier

Published: 2020-06-19

Total Pages: 502

ISBN-13: 0128184760

DOWNLOAD EBOOK

Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. - Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales - Provides fundamental theoretical insights, example problems, sample code and exercise problems - Outlines major characterization and synthesis methods for different types of 2D materials


Characterization of Biomaterials

Characterization of Biomaterials

Author: Mangal Roy

Publisher: Elsevier Inc. Chapters

Published: 2013-03-12

Total Pages: 19

ISBN-13: 0128071036

DOWNLOAD EBOOK

In joint replacement surgery with suboptimal bone, allograft materials are often used to achieve biological fixation of the metallic implant to the host bone and reducing the implant fixation time. The most commonly used techniques are cemented and hydroxyapatite (HA)-coated metallic implants. Typically, HA coatings are suggested for patients with better bone stock, whereas recommended implant fixation process for most other osteoporotic patients is bone cements. In general, there is a long-standing need to improve the performance of hip and other devices for longer in vivo implant lifetime that can help in reducing the number of revision surgeries, as well as minimizing physical and mental trauma to the patient. To achieve these goals, it is important to understand the mechanical and biological properties of coatings that can influence not only its short- and long-term bioactivity but also life span in vivo. Over the years, it has been recognized that the stability of a coated implant is governed by its physical and mechanical properties. A coating that separates from the implant provides no advantage over an uncoated implant and undesirable due to problems with debris materials, which can lead to osteolysis. Therefore, it is important to properly characterize the coated implants in terms of its physical and mechanical properties. In this chapter, specific details on coating characterization techniques including sample dimensions, sample preparation, experimental procedure and data interpretation are discussed. In particular, the standards and requirements of regulatory organizations are presented elucidating the significance and use of each characterization. It is important to appreciate that mechanical properties of coatings can only be determined with certain coating specification such as coating thickness. This chapter is designed even for non-experts to follow mechanical property characterizations of coatings on medical implants.


Properties and Characterization of Modern Materials

Properties and Characterization of Modern Materials

Author: Andreas Ă–chsner

Publisher: Springer

Published: 2016-07-30

Total Pages: 450

ISBN-13: 981101602X

DOWNLOAD EBOOK

This book focuses on robust characterization and prediction methods for materials in technical applications as well as the materials’ safety features during operation. In particular, it presents methods for reliably predicting material properties, an aspect that is becoming increasingly important as engineering materials are pushed closer and closer to their limits to boost the performance of machines and structures. To increase their engineering value, components are now designed under the consideration of their multiphysical properties and functions, which requires much more intensive investigation and characterization of these materials. The materials covered in this monograph range from metal-based groups such as lightweight alloys, to advanced high-strength steels and modern titanium alloys. Furthermore, a wide range of polymers and composite materials (e.g. with micro- and nanoparticles or fibres) is covered. The book explores methods for property prediction from classical mechanical characterization-related fields of application, for example, from wear, creep, fatigue and crack growth, to specific surface properties, to dielectric and electrochemical values. As in all fields of modern engineering, the process is often accompanied by numerical simulation and optimization.


TMS 2011 140th Annual Meeting and Exhibition, Materials Processing and Energy Materials

TMS 2011 140th Annual Meeting and Exhibition, Materials Processing and Energy Materials

Author: The Minerals, Metals & Materials Society (TMS)

Publisher: John Wiley & Sons

Published: 2011-04-12

Total Pages: 774

ISBN-13: 1118062094

DOWNLOAD EBOOK

Materials science and engineering professionals from around the world gathered at the TMS 2011 Annual Meeting & Exhibition to network, present the latest research and industrial applications, and collaborate on ways to further innovation and advancement in the field. The meeting featured more than 70 symposia and some 3,000 presentations. The Supplemental TMS 2011 Proceedings collect some of the most important papers presented at the meeting, giving readers the opportunity to benefit from the latest discoveries in mineral, metals, and materials research. Topics cover everything from minerals processing and primary metals production to basic research and advanced materials applications. Moreover, you'll learn about the latest research efforts within the industry to develop sustainable, environmentally friendly products and processes.


Unit Manufacturing Processes

Unit Manufacturing Processes

Author: National Research Council

Publisher: National Academies Press

Published: 1995-01-03

Total Pages: 228

ISBN-13: 0309176670

DOWNLOAD EBOOK

Manufacturing, reduced to its simplest form, involves the sequencing of product forms through a number of different processes. Each individual step, known as an unit manufacturing process, can be viewed as the fundamental building block of a nation's manufacturing capability. A committee of the National Research Council has prepared a report to help define national priorities for research in unit processes. It contains an organizing framework for unit process families, criteria for determining the criticality of a process or manufacturing technology, examples of research opportunities, and a prioritized list of enabling technologies that can lead to the manufacture of products of superior quality at competitive costs. The study was performed under the sponsorship of the National Science Foundation and the Defense Department's Manufacturing Technology Program.


Dynamic Behavior of Materials

Dynamic Behavior of Materials

Author: Marc A. Meyers

Publisher: John Wiley & Sons

Published: 1994-10-28

Total Pages: 694

ISBN-13: 9780471582625

DOWNLOAD EBOOK

Addresses fundamentals and advanced topics relevant to the behavior of materials under in-service conditions such as impact, shock, stress and high-strain rate deformations. Deals extensively with materials from a microstructure perspective which is the future direction of research today.