Several statistical techniques are used for the design of materials through extraction of knowledge from existing data banks. These approaches are getting more attention with the application of computational intelligence techniques. This book illustrates the alternative but effective methods of designing materials, where models are developed through capturing the inherent correlations among the variables on the basis of available imprecise knowledge in the form of rules or database, as well as through the extraction of knowledge from experimental or industrial database, and using optimization tools.
Brings together empirical research, theoretical concepts, and the various approaches in the design and discovery of new materials. Thois volume highlights optimization tools and soft computing methods, and is ideal for researchers, both in academia and in industrial settings, and practitioners who are interested in the application of computational techniques in materials engineering.
Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.
The development of new and superior materials is beneficial within industrial settings, as well as a topic of academic interest. By using computational modeling techniques, the probable application and performance of these materials can be easily evaluated. Computational Approaches to Materials Design: Theoretical and Practical Aspects brings together empirical research, theoretical concepts, and the various approaches in the design and discovery of new materials. Highlighting optimization tools and soft computing methods, this publication is a comprehensive collection for researchers, both in academia and in industrial settings, and practitioners who are interested in the application of computational techniques in the field of materials engineering.
Many kinds of practical problems such as engineering design, industrial m- agement and ?nancial investment have multiple objectives con?icting with eachother. Thoseproblemscanbeformulatedasmultiobjectiveoptimization. In multiobjective optimization, there does not necessarily a unique solution which minimizes (or maximizes) all objective functions. We usually face to the situation in which if we want to improve some of objectives, we have to give up other objectives. Finally, we pay much attention on how much to improve some of objectives and instead how much to give up others. This is called “trade-o?. ” Note that making trade-o? is a problem of value ju- ment of decision makers. One of main themes of multiobjective optimization is how to incorporate value judgment of decision makers into decision s- port systems. There are two major issues in value judgment (1) multiplicity of value judgment and (2) dynamics of value judgment. The multiplicity of value judgment is treated as trade-o? analysis in multiobjective optimi- tion. On the other hand, dynamics of value judgment is di?cult to treat. However, it is natural that decision makers change their value judgment even in decision making process, because they obtain new information during the process. Therefore, decision support systems are to be robust against the change of value judgment of decision makers. To this aim, interactive p- grammingmethodswhichsearchasolutionwhileelicitingpartialinformation on value judgment of decision makers have been developed. Those methods are required to perform ?exibly for decision makers’ attitude.
This book provides state-of-the-art computational approaches for accelerating materials discovery, synthesis, and processing using thermodynamics and kinetics. The authors deliver an overview of current practical computational tools for materials design in the field. They describe ways to integrate thermodynamics and kinetics and how the two can supplement each other.
This book describes the application of artificial intelligence (AI)/machine learning (ML) concepts to develop predictive models that can be used to design alloy materials, including hard and soft magnetic alloys, nickel-base superalloys, titanium-base alloys, and aluminum-base alloys. Readers new to AI/ML algorithms can use this book as a starting point and use the MATLAB® and Python implementation of AI/ML algorithms through included case studies. Experienced AI/ML researchers who want to try new algorithms can use this book and study the case studies for reference. Offers advantages and limitations of several AI concepts and their proper implementation in various data types generated through experiments and computer simulations and from industries in different file formats Helps readers to develop predictive models through AI/ML algorithms by writing their own computer code or using resources where they do not have to write code Covers downloadable resources such as MATLAB GUI/APP and Python implementation that can be used on common mobile devices Discusses the CALPHAD approach and ways to use data generated from it Features a chapter on metallurgical/materials concepts to help readers understand the case studies and thus proper implementation of AI/ML algorithms under the framework of data-driven materials science Uses case studies to examine the importance of using unsupervised machine learning algorithms in determining patterns in datasets This book is written for materials scientists and metallurgists interested in the application of AI, ML, and data science in the development of new materials.
This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.
This book explores the transformative impact of artificial intelligence on material science and construction practices in the Industry 4.0 landscape. It enquires into AI history and applications, examining material optimization, smart materials, and AI in construction. Covering automation, robotics, and AI-assisted design, the book provides insights into ethical considerations and future trends. A modern reference for scholars and professionals, it bridges academia and practical applications in the dynamic intersection of AI and materials science.
This book presents the latest cutting edge research, theoretical methods, and novel applications in the field of computational intelligence and computational biological approaches that are aiming to combat COVID-19. The book gives the technological key drivers behind using AI to find drugs that target the virus, shedding light on the structure of COVID-19, detecting the outbreak and spread of new diseases, spotting signs of a COVID-19 infection in medical images, monitoring how the virus and lockdown is affecting mental health, and forecasting how COVID-19 cases and deaths will spread across cities and why. Further, the book helps readers understand computational intelligence techniques combating COVID-19 in a simple and systematic way. Provides a comprehensive reference covering innovations and development of theories, conceptual models and computational algorithms focused on COVID-19; Asserts all relevant research, key themes, complex adaptive systems, metrics and paradigms dedicated towards COVID-19, enabled with evolutionary methods of computational sciences; Explores how AI and computational techniques can help to predict which patients with the virus would go on to develop Acute Respiratory Distress Syndrome (ARDS).