Fifteen papers from the symposium held in Philadelphia, March 1990, examine the uses of thermomechanical analysis and thermodilatometry in materials science, addressing instrumentation, techniques, and applications. Annotation copyright Book News, Inc. Portland, Or.
The special technical publication has been compiled from the 15 presentations at a May 2000 Association symposium in Toronto. They cover the fundamentals of the techniques, its use in curing and chemical reactions, measuring the glass transition and melting by modulated and comparative techniques, g
Presents a solid introduction to thermal analysis, methods, instrumentation, calibration, and application along with the necessary theoretical background. Useful to chemists, physicists, materials scientists, and engineers who are new to thermal analysis techniques, and to existing users of thermal analysis who wish expand their experience to new techniques and applications Topics covered include Differential Scanning Calorimetry and Differential Thermal Analysis (DSC/DTA), Thermogravimetry, Thermomechanical Analysis and Dilatometry, Dynamic Mechanical Analysis, Micro-Thermal Analysis, Hot Stage Microscopy, and Instrumentation. Written by experts in the various areas of thermal analysis Relevant and detailed experiments and examples follow each chapter.
Thermal analysis is an old technique. It has been neglected to some degree because developments of convenient methods of measurement have been slow and teaching of the understanding of the basics of thermal analysis is often wanting. Flexible, linear macromolecules, also not as accurately simply called polymers, make up the final, third, class of molecules which only was identified in 1920. Polymers have neverbeenfullyintegratedintothedisciplinesofscienceandengineering. Thisbook is designed to teach thermal analysis and the understanding of all materials, flexible macromolecules, as well as those of the small molecules and rigid macromolecules. The macroscopic tool of inquiry is thermal analysis, and the results are linked to microscopic molecular structure and motion. Measurements of heat and mass are the two roots of quantitative science. The macroscopic heat is connected to the microscopic atomic motion, while the macroscopic mass is linked to the microscopic atomic structure. The macroscopic unitsofmeasurementofheatandmassarethejouleandthegram,chosentobeeasily discernable by the human senses. The microscopic units of motion and structure are 12 10 the picosecond (10 seconds) and the ångstrom (10 meters), chosen to fit the atomic scales. One notes a factor of 10,000 between the two atomic units when expressed in “human” units, second and gram—with one gram being equal to one cubic centimeter when considering water. Perhaps this is the reason for the much better understanding and greater interest in the structure of materials, being closer to human experience when compared to molecular motion.
This comprehensive book containing essential information on the applicability of thermal analysis techniques to evaluate inorganic and organic materials in construction technology should serve as a useful reference for the scientist, engineer, construction technologist, architect, manufacturer, and user of construction materials, standard-writing bodies, and analytical chemists. The material scientists at the National Research Council of Canada have established one of the best thermal analysis laboratories in the world. Various types of thermal analysis techniques have been applied successfully to the investigation of inorganic and organic construction materials. These studies have provided important information on the characterization of raw as well as finished materials, quality control, quantitative estimation, interrelationships between physical, chemical, mechanical, and durability characteristics. Information on the application of thermal analysis to construction materials is dispersed in literature and hence the IRC scientists embarked on producing a handbook, the first of its kind, incorporating the latest knowledge available in this field of activity. Almost all important construction materials have been included.
Written both for the novice and for the experienced scientist, this miniature encyclopedia concisely describes over one hundred materials methodologies, including evaluation, chemical analysis, and physical testing techniques. Each technique is presented in terms of its use, sample requirements, and the engineering principles behind its methodology. Real life industrial and academic applications are also described to give the reader an understanding of the significance and utilization of technique. There is also a discussion of the limitations of each technique.
Nanostructured Materials Engineering and Characterization for Battery Applications is designed to help solve fundamental and applied problems in the field of energy storage. Broken up into four separate sections, the book begins with a discussion of the fundamental electrochemical concepts in the field of energy storage. Other sections look at battery materials engineering such as cathodes, electrolytes, separators and anodes and review various battery characterization methods and their applications. The book concludes with a review of the practical considerations and applications of batteries.This will be a valuable reference source for university professors, researchers, undergraduate and postgraduate students, as well as scientists working primarily in the field of materials science, applied chemistry, applied physics and nanotechnology. - Presents practical consideration for battery usage such as LCA, recycling and green batteries - Covers battery characterization techniques including electrochemical methods, microscopy, spectroscopy and X-ray methods - Explores battery models and computational materials design theories
The use of thermal and calorimetric methods has shown rapid growth over the last two decades, in an increasingly wide range of applications. In addition, a number of powerful new techniques have been developed. This book supplies a concise and readable account of the principles, experimental apparatus and practical procedures used in thermal analysis and calorimetric methods of analysis. Brief accounts of the basic theory are reinforced with detailed applications of the methods and contemporary developments. Also included is information on standard test methods and manufacturers. Written by acknowledged experts, Principles of Thermal Analysis and Calorimetry is up-to-date, wide-ranging and practical. It will be an important source of information for many levels of readership in a variety of areas, from students and lecturers through to industrial and laboratory staff and consultants.