This volume contains a wealth of results and methodologies applicable to a wide range of problems arising in reaction-diffusion theory. It can be viewed both as a handbook, and as a detailed description of the methodology. The authors present new methods based on matched asymptotic expansions.
A monograph containing significant new developments in the theory of reaction-diffusion systems, particularly those arising in chemistry and life sciences.
This book details the classical part of the theory of algebraic number theory, excluding class-field theory and its consequences. Coverage includes: ideal theory in rings of algebraic integers, p-adic fields and their finite extensions, ideles and adeles, zeta-functions, distribution of prime ideals, Abelian fields, the class-number of quadratic fields, and factorization problems. The book also features exercises and a list of open problems.
The fundamental question of characterizing continuity and boundedness of Gaussian processes goes back to Kolmogorov. After contributions by R. Dudley and X. Fernique, it was solved by the author. This book provides an overview of "generic chaining", a completely natural variation on the ideas of Kolmogorov. It takes the reader from the first principles to the edge of current knowledge and to the open problems that remain in this domain.
This monograph is devoted to a completely new approach to geometric problems arising in the study of random fields. The groundbreaking material in Part III, for which the background is carefully prepared in Parts I and II, is of both theoretical and practical importance, and striking in the way in which problems arising in geometry and probability are beautifully intertwined. "Random Fields and Geometry" will be useful for probabilists and statisticians, and for theoretical and applied mathematicians who wish to learn about new relationships between geometry and probability. It will be helpful for graduate students in a classroom setting, or for self-study. Finally, this text will serve as a basic reference for all those interested in the companion volume of the applications of the theory.
This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics.Key features: - Written by well-known experts in the field- Self-contained volume in series covering one of the most rapid developing topics in mathematics- Written by well-known experts in the field- Self-contained volume in series covering one of the most rapid developing topics in mathematics
Over the years, this book has become a standard reference and guide in the set theory community. It provides a comprehensive account of the theory of large cardinals from its beginnings and some of the direct outgrowths leading to the frontiers of contemporary research, with open questions and speculations throughout.
This is the first of two books on methods and techniques in the calculus of variations. Contemporary arguments are used throughout the text to streamline and present in a unified way classical results, and to provide novel contributions at the forefront of the theory. This book addresses fundamental questions related to lower semicontinuity and relaxation of functionals within the unconstrained setting, mainly in L^p spaces. It prepares the ground for the second volume where the variational treatment of functionals involving fields and their derivatives will be undertaken within the framework of Sobolev spaces. This book is self-contained. All the statements are fully justified and proved, with the exception of basic results in measure theory, which may be found in any good textbook on the subject. It also contains several exercises. Therefore,it may be used both as a graduate textbook as well as a reference text for researchers in the field. Irene Fonseca is the Mellon College of Science Professor of Mathematics and is currently the Director of the Center for Nonlinear Analysis in the Department of Mathematical Sciences at Carnegie Mellon University. Her research interests lie in the areas of continuum mechanics, calculus of variations, geometric measure theory and partial differential equations. Giovanni Leoni is also a professor in the Department of Mathematical Sciences at Carnegie Mellon University. He focuses his research on calculus of variations, partial differential equations and geometric measure theory with special emphasis on applications to problems in continuum mechanics and in materials science.
Following Quillen's approach to complex cobordism, the authors introduce the notion of oriented cohomology theory on the category of smooth varieties over a fixed field. They prove the existence of a universal such theory (in characteristic 0) called Algebraic Cobordism. The book also contains some examples of computations and applications.