Martingales and Financial Mathematics in Discrete Time

Martingales and Financial Mathematics in Discrete Time

Author: Benoîte de Saporta

Publisher: John Wiley & Sons

Published: 2022-01-26

Total Pages: 242

ISBN-13: 1786306697

DOWNLOAD EBOOK

This book is entirely devoted to discrete time and provides a detailed introduction to the construction of the rigorous mathematical tools required for the evaluation of options in financial markets. Both theoretical and practical aspects are explored through multiple examples and exercises, for which complete solutions are provided. Particular attention is paid to the Cox, Ross and Rubinstein model in discrete time. The book offers a combination of mathematical teaching and numerous exercises for wide appeal. It is a useful reference for students at the master’s or doctoral level who are specializing in applied mathematics or finance as well as teachers, researchers in the field of economics or actuarial science, or professionals working in the various financial sectors. Martingales and Financial Mathematics in Discrete Time is also for anyone who may be interested in a rigorous and accessible mathematical construction of the tools and concepts used in financial mathematics, or in the application of the martingale theory in finance


Martingale Methods in Financial Modelling

Martingale Methods in Financial Modelling

Author: Marek Musiela

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 521

ISBN-13: 3662221322

DOWNLOAD EBOOK

A comprehensive and self-contained treatment of the theory and practice of option pricing. The role of martingale methods in financial modeling is exposed. The emphasis is on using arbitrage-free models already accepted by the market as well as on building the new ones. Standard calls and puts together with numerous examples of exotic options such as barriers and quantos, for example on stocks, indices, currencies and interest rates are analysed. The importance of choosing a convenient numeraire in price calculations is explained. Mathematical and financial language is used so as to bring mathematicians closer to practical problems of finance and presenting to the industry useful maths tools.


Mathematics of Financial Markets

Mathematics of Financial Markets

Author: Robert J Elliott

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 298

ISBN-13: 1475771460

DOWNLOAD EBOOK

This book explores the mathematics that underpins pricing models for derivative securities such as options, futures and swaps in modern markets. Models built upon the famous Black-Scholes theory require sophisticated mathematical tools drawn from modern stochastic calculus. However, many of the underlying ideas can be explained more simply within a discrete-time framework. This is developed extensively in this substantially revised second edition to motivate the technically more demanding continuous-time theory.


Option Valuation

Option Valuation

Author: Hugo D. Junghenn

Publisher: CRC Press

Published: 2011-11-23

Total Pages: 268

ISBN-13: 1439889112

DOWNLOAD EBOOK

Option Valuation: A First Course in Financial Mathematics provides a straightforward introduction to the mathematics and models used in the valuation of financial derivatives. It examines the principles of option pricing in detail via standard binomial and stochastic calculus models. Developing the requisite mathematical background as needed, the text presents an introduction to probability theory and stochastic calculus suitable for undergraduate students in mathematics, economics, and finance. The first nine chapters of the book describe option valuation techniques in discrete time, focusing on the binomial model. The author shows how the binomial model offers a practical method for pricing options using relatively elementary mathematical tools. The binomial model also enables a clear, concrete exposition of fundamental principles of finance, such as arbitrage and hedging, without the distraction of complex mathematical constructs. The remaining chapters illustrate the theory in continuous time, with an emphasis on the more mathematically sophisticated Black-Scholes-Merton model. Largely self-contained, this classroom-tested text offers a sound introduction to applied probability through a mathematical finance perspective. Numerous examples and exercises help students gain expertise with financial calculus methods and increase their general mathematical sophistication. The exercises range from routine applications to spreadsheet projects to the pricing of a variety of complex financial instruments. Hints and solutions to odd-numbered problems are given in an appendix and a full solutions manual is available for qualifying instructors.


Introduction to Stochastic Finance

Introduction to Stochastic Finance

Author: Jia-An Yan

Publisher: Springer

Published: 2018-10-10

Total Pages: 406

ISBN-13: 9811316570

DOWNLOAD EBOOK

This book gives a systematic introduction to the basic theory of financial mathematics, with an emphasis on applications of martingale methods in pricing and hedging of contingent claims, interest rate term structure models, and expected utility maximization problems. The general theory of static risk measures, basic concepts and results on markets of semimartingale model, and a numeraire-free and original probability based framework for financial markets are also included. The basic theory of probability and Ito's theory of stochastic analysis, as preliminary knowledge, are presented.


An Introduction to the Mathematics of Financial Derivatives

An Introduction to the Mathematics of Financial Derivatives

Author: Salih N. Neftci

Publisher: Academic Press

Published: 2000-05-19

Total Pages: 550

ISBN-13: 0125153929

DOWNLOAD EBOOK

A step-by-step explanation of the mathematical models used to price derivatives. For this second edition, Salih Neftci has expanded one chapter, added six new ones, and inserted chapter-concluding exercises. He does not assume that the reader has a thorough mathematical background. His explanations of financial calculus seek to be simple and perceptive.


Stochastic Calculus and Financial Applications

Stochastic Calculus and Financial Applications

Author: J. Michael Steele

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 303

ISBN-13: 1468493051

DOWNLOAD EBOOK

Stochastic calculus has important applications to mathematical finance. This book will appeal to practitioners and students who want an elementary introduction to these areas. From the reviews: "As the preface says, ‘This is a text with an attitude, and it is designed to reflect, wherever possible and appropriate, a prejudice for the concrete over the abstract’. This is also reflected in the style of writing which is unusually lively for a mathematics book." --ZENTRALBLATT MATH


Stochastic Financial Models

Stochastic Financial Models

Author: Douglas Kennedy

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 264

ISBN-13: 1439882711

DOWNLOAD EBOOK

Filling the void between surveys of the field with relatively light mathematical content and books with a rigorous, formal approach to stochastic integration and probabilistic ideas, Stochastic Financial Models provides a sound introduction to mathematical finance. The author takes a classical applied mathematical approach, focusing on calculations


Financial Calculus

Financial Calculus

Author: Martin Baxter

Publisher: Cambridge University Press

Published: 1996-09-19

Total Pages: 252

ISBN-13: 9780521552899

DOWNLOAD EBOOK

A rigorous introduction to the mathematics of pricing, construction and hedging of derivative securities.


PDE and Martingale Methods in Option Pricing

PDE and Martingale Methods in Option Pricing

Author: Andrea Pascucci

Publisher: Springer Science & Business Media

Published: 2011-04-15

Total Pages: 727

ISBN-13: 8847017815

DOWNLOAD EBOOK

This book offers an introduction to the mathematical, probabilistic and numerical methods used in the modern theory of option pricing. The text is designed for readers with a basic mathematical background. The first part contains a presentation of the arbitrage theory in discrete time. In the second part, the theories of stochastic calculus and parabolic PDEs are developed in detail and the classical arbitrage theory is analyzed in a Markovian setting by means of of PDEs techniques. After the martingale representation theorems and the Girsanov theory have been presented, arbitrage pricing is revisited in the martingale theory optics. General tools from PDE and martingale theories are also used in the analysis of volatility modeling. The book also contains an Introduction to Lévy processes and Malliavin calculus. The last part is devoted to the description of the numerical methods used in option pricing: Monte Carlo, binomial trees, finite differences and Fourier transform.