Markov Processes, Feller Semigroups and Evolution Equations

Markov Processes, Feller Semigroups and Evolution Equations

Author: J. A. van Casteren

Publisher: World Scientific

Published: 2011

Total Pages: 825

ISBN-13: 9814322180

DOWNLOAD EBOOK

The book provides a systemic treatment of time-dependent strong Markov processes with values in a Polish space. It describes its generators and the link with stochastic differential equations in infinite dimensions. In a unifying way, where the square gradient operator is employed, new results for backward stochastic differential equations and long-time behavior are discussed in depth. The book also establishes a link between propagators or evolution families with the Feller property and time-inhomogeneous Markov processes. This mathematical material finds its applications in several branches of the scientific world, among which are mathematical physics, hedging models in financial mathematics, and population models.


Generators of Markov Chains

Generators of Markov Chains

Author: Adam Bobrowski

Publisher: Cambridge University Press

Published: 2021

Total Pages: 279

ISBN-13: 1108495796

DOWNLOAD EBOOK

A clear explanation of what an explosive Markov chain does after it passes through all available states in finite time.


Markov Processes, Semigroups and Generators

Markov Processes, Semigroups and Generators

Author: Vassili N. Kolokoltsov

Publisher: Walter de Gruyter

Published: 2011-03-29

Total Pages: 449

ISBN-13: 311025011X

DOWNLOAD EBOOK

Markov processes represent a universal model for a large variety of real life random evolutions. The wide flow of new ideas, tools, methods and applications constantly pours into the ever-growing stream of research on Markov processes that rapidly spreads over new fields of natural and social sciences, creating new streamlined logical paths to its turbulent boundary. Even if a given process is not Markov, it can be often inserted into a larger Markov one (Markovianization procedure) by including the key historic parameters into the state space. This monograph gives a concise, but systematic and self-contained, exposition of the essentials of Markov processes, together with recent achievements, working from the "physical picture" - a formal pre-generator, and stressing the interplay between probabilistic (stochastic differential equations) and analytic (semigroups) tools. The book will be useful to students and researchers. Part I can be used for a one-semester course on Brownian motion, Lévy and Markov processes, or on probabilistic methods for PDE. Part II mainly contains the author's research on Markov processes. From the contents: Tools from Probability and Analysis Brownian motion Markov processes and martingales SDE, ψDE and martingale problems Processes in Euclidean spaces Processes in domains with a boundary Heat kernels for stable-like processes Continuous-time random walks and fractional dynamics Complex chains and Feynman integral


Markov Processes, Semigroups, and Generators

Markov Processes, Semigroups, and Generators

Author: Vassili N. Kolokoltsov

Publisher: Walter de Gruyter

Published: 2011

Total Pages: 449

ISBN-13: 3110250101

DOWNLOAD EBOOK

This work offers a highly useful, well developed reference on Markov processes, the universal model for random processes and evolutions. The wide range of applications, in exact sciences as well as in other areas like social studies, require a volume that offers a refresher on fundamentals before conveying the Markov processes and examples for


Structured Dependence between Stochastic Processes

Structured Dependence between Stochastic Processes

Author: Tomasz R. Bielecki

Publisher: Cambridge University Press

Published: 2020-08-27

Total Pages: 280

ISBN-13: 1108895379

DOWNLOAD EBOOK

The relatively young theory of structured dependence between stochastic processes has many real-life applications in areas including finance, insurance, seismology, neuroscience, and genetics. With this monograph, the first to be devoted to the modeling of structured dependence between random processes, the authors not only meet the demand for a solid theoretical account but also develop a stochastic processes counterpart of the classical copula theory that exists for finite-dimensional random variables. Presenting both the technical aspects and the applications of the theory, this is a valuable reference for researchers and practitioners in the field, as well as for graduate students in pure and applied mathematics programs. Numerous theoretical examples are included, alongside examples of both current and potential applications, aimed at helping those who need to model structured dependence between dynamic random phenomena.


Markov Operators, Positive Semigroups and Approximation Processes

Markov Operators, Positive Semigroups and Approximation Processes

Author: Francesco Altomare

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2014-12-17

Total Pages: 326

ISBN-13: 3110366975

DOWNLOAD EBOOK

This research monograph gives a detailed account of a theory which is mainly concerned with certain classes of degenerate differential operators, Markov semigroups and approximation processes. These mathematical objects are generated by arbitrary Markov operators acting on spaces of continuous functions defined on compact convex sets; the study of the interrelations between them constitutes one of the distinguishing features of the book. Among other things, this theory provides useful tools for studying large classes of initial-boundary value evolution problems, the main aim being to obtain a constructive approximation to the associated positive C0-semigroups by means of iterates of suitable positive approximating operators. As a consequence, a qualitative analysis of the solutions to the evolution problems can be efficiently developed. The book is mainly addressed to research mathematicians interested in modern approximation theory by positive linear operators and/or in the theory of positive C0-semigroups of operators and evolution equations. It could also serve as a textbook for a graduate level course.


Lévy Matters III

Lévy Matters III

Author: Björn Böttcher

Publisher: Springer

Published: 2014-01-16

Total Pages: 215

ISBN-13: 3319026844

DOWNLOAD EBOOK

This volume presents recent developments in the area of Lévy-type processes and more general stochastic processes that behave locally like a Lévy process. Although written in a survey style, quite a few results are extensions of known theorems, and others are completely new. The focus is on the symbol of a Lévy-type process: a non-random function which is a counterpart of the characteristic exponent of a Lévy process. The class of stochastic processes which can be associated with a symbol is characterized, various schemes constructing a stochastic process from a given symbol are discussed, and it is shown how one can use the symbol in order to describe the sample path properties of the underlying process. Lastly, the symbol is used to approximate and simulate Levy-type processes. This is the third volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters. Each volume describes a number of important topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject with special emphasis on the non-Brownian world.


Lévy Matters VI

Lévy Matters VI

Author: Franziska Kühn

Publisher: Springer

Published: 2017-10-05

Total Pages: 264

ISBN-13: 3319608886

DOWNLOAD EBOOK

Presenting some recent results on the construction and the moments of Lévy-type processes, the focus of this volume is on a new existence theorem, which is proved using a parametrix construction. Applications range from heat kernel estimates for a class of Lévy-type processes to existence and uniqueness theorems for Lévy-driven stochastic differential equations with Hölder continuous coefficients. Moreover, necessary and sufficient conditions for the existence of moments of Lévy-type processes are studied and some estimates on moments are derived. Lévy-type processes behave locally like Lévy processes but, in contrast to Lévy processes, they are not homogeneous in space. Typical examples are processes with varying index of stability and solutions of Lévy-driven stochastic differential equations. This is the sixth volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters. Each volume describes a number of important topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject, with special emphasis on the non-Brownian world.


Semigroups, Boundary Value Problems and Markov Processes

Semigroups, Boundary Value Problems and Markov Processes

Author: Kazuaki Taira

Publisher: Springer

Published: 2014-08-07

Total Pages: 724

ISBN-13: 3662436965

DOWNLOAD EBOOK

A careful and accessible exposition of functional analytic methods in stochastic analysis is provided in this book. It focuses on the interrelationship between three subjects in analysis: Markov processes, semi groups and elliptic boundary value problems. The author studies a general class of elliptic boundary value problems for second-order, Waldenfels integro-differential operators in partial differential equations and proves that this class of elliptic boundary value problems provides a general class of Feller semigroups in functional analysis. As an application, the author constructs a general class of Markov processes in probability in which a Markovian particle moves both by jumps and continuously in the state space until it 'dies' at the time when it reaches the set where the particle is definitely absorbed. Augmenting the 1st edition published in 2004, this edition includes four new chapters and eight re-worked and expanded chapters. It is amply illustrated and all chapters are rounded off with Notes and Comments where bibliographical references are primarily discussed. Thanks to the kind feedback from many readers, some errors in the first edition have been corrected. In order to keep the book up-to-date, new references have been added to the bibliography. Researchers and graduate students interested in PDEs, functional analysis and probability will find this volume useful.


Stochastic Analysis: A Series of Lectures

Stochastic Analysis: A Series of Lectures

Author: Robert C. Dalang

Publisher: Birkhäuser

Published: 2015-07-28

Total Pages: 402

ISBN-13: 3034809093

DOWNLOAD EBOOK

This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields of stochastic analysis and mathematical physics. Contributors: S. Albeverio M. Arnaudon V. Bally V. Barbu H. Bessaih Z. Brzeźniak K. Burdzy A.B. Cruzeiro F. Flandoli A. Kohatsu-Higa S. Mazzucchi C. Mueller J. van Neerven M. Ondreját S. Peszat M. Veraar L. Weis J.-C. Zambrini