Markov Chain Monte Carlo Methods in Quantum Field Theories

Markov Chain Monte Carlo Methods in Quantum Field Theories

Author: Anosh Joseph

Publisher: Springer Nature

Published: 2020-04-16

Total Pages: 134

ISBN-13: 3030460444

DOWNLOAD EBOOK

This primer is a comprehensive collection of analytical and numerical techniques that can be used to extract the non-perturbative physics of quantum field theories. The intriguing connection between Euclidean Quantum Field Theories (QFTs) and statistical mechanics can be used to apply Markov Chain Monte Carlo (MCMC) methods to investigate strongly coupled QFTs. The overwhelming amount of reliable results coming from the field of lattice quantum chromodynamics stands out as an excellent example of MCMC methods in QFTs in action. MCMC methods have revealed the non-perturbative phase structures, symmetry breaking, and bound states of particles in QFTs. The applications also resulted in new outcomes due to cross-fertilization with research areas such as AdS/CFT correspondence in string theory and condensed matter physics. The book is aimed at advanced undergraduate students and graduate students in physics and applied mathematics, and researchers in MCMC simulations and QFTs. At the end of this book the reader will be able to apply the techniques learned to produce more independent and novel research in the field.


Monte Carlo Methods in Quantum Problems

Monte Carlo Methods in Quantum Problems

Author: M.H. Kalos

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 292

ISBN-13: 940096384X

DOWNLOAD EBOOK

Monte Carlo methods have been a tool of theoretical and computational scientists for many years. In particular, the invention and percolation of the algorithm of Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller sparked a rapid growth of applications to classical statistical mechanics. Although proposals for treatment of quantum systems had been made even earlier, only a few serious calculations had heen carried out. Ruch calculations are generally more consuming of computer resources than for classical systems and no universal algorithm had--or indeed has yet-- emerged. However, with advances in techniques and in sheer computing power, Monte Carlo methods have been used with considerable success in treating quantum fluids and crystals, simple models of nuclear matter, and few-body nuclei. Research at several institutions suggest that they may offer a new approach to quantum chemistry, one that is independent of basis ann yet capable of chemical accuracy. That. Monte Carlo methods can attain the very great precision needed is itself a remarkable achievement. More recently, new interest in such methods has arisen in two new a~as. Particle theorists, in particular K. Wilson, have drawn attention to the rich analogy between quantum field theoty and statistical mechanics and to the merits of Monte Carlo calculations for lattice gauge theories. This has become a rapidly growing sub-field. A related development is associated with lattice problems in quantum physics, particularly with models of solid state systems. The~ is much ferment in the calculation of various one-dimensional problems such as the'Hubbard model.


Quantum Monte Carlo Methods in Physics and Chemistry

Quantum Monte Carlo Methods in Physics and Chemistry

Author: M.P. Nightingale

Publisher: Springer Science & Business Media

Published: 1998-12-31

Total Pages: 488

ISBN-13: 9780792355519

DOWNLOAD EBOOK

In recent years there has been a considerable growth in interest in Monte Carlo methods, and quantum Monte Carlo methods in particlular. Clearly, the ever-increasing computational power available to researchers, has stimulated the development of improved algorithms, and almost all fields in computational physics and chemistry are affected by their applications. Here we just mention some fields that are covered in the lecture notes contained in this volume, viz. electronic structure studies of atoms, molecules and solids, nuclear structure, and low- or zero-temperature studies of strongly-correlated quantum systems, both of the continuum and lattice variety, and cooperative phenomena in classical systems. Although each area of application may have its own peculiarities, requiring specialized solutions, all share the same basic methodology. It was with the intention of bringing together researchers and students from these various areas that the NATO Advanced Study Institute on Quantum Monte Carlo Methods in Physics and Chemistry was held at Cornell University from 12 to 24 July, 1998. This book contains material presented at the Institute in a series of mini courses in quantum Monte Carlo methods. The program consisted of lectures predominantly of a pedagogical nature, and of more specialized seminars. The levels varied from introductory to advanced, and from basic methods to applications; the program was intended for an audience working towards the Ph.D. level and above. Despite the essentially pedagogic nature of the Institute, several of the lectures and seminars contained in this volume present recent developments not previously published.


Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems

Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems

Author: Hidemaro Suwa

Publisher: Springer Science & Business Media

Published: 2013-11-05

Total Pages: 135

ISBN-13: 4431545174

DOWNLOAD EBOOK

In this thesis, novel Monte Carlo methods for precisely calculating the critical phenomena of the effectively frustrated quantum spin system are developed and applied to the critical phenomena of the spin-Peierls systems. Three significant methods are introduced for the first time: a new optimization algorithm of the Markov chain transition kernel based on the geometric weight-allocation approach, the extension of the worm (directed-loop) algorithm to nonconserved particles, and the combination with the level spectroscopy. Utilizing these methods, the phase diagram of the one-dimensional XXZ spin-Peierls system is elucidated. Furthermore, the multi-chain and two-dimensional spin-Peierls systems with interchain lattice interaction are investigated. The unbiased simulation shows that the interesting quantum phase transition between the 1D-like liquid phase and the macroscopically-degenerated dimer phase occurs on the fully-frustrated parameter line that separates the doubly-degenerated dimer phases in the two-dimensional phase diagram. The spin-phonon interaction in the spin-Peierls system introduces the spin frustration, which usually hinders the quantum Monte Carlo analysis, owing to the notorious negative sign problem. In this thesis, the author has succeeded in precisely calculating the critical phenomena of the effectively frustrated quantum spin system by means of the quantum Monte Carlo method without the negative sign.


Monte Carlo Methods

Monte Carlo Methods

Author: Neal Noah Madras

Publisher: American Mathematical Soc.

Published: 2000

Total Pages: 238

ISBN-13: 0821819925

DOWNLOAD EBOOK

This volume contains the proceedings of the Workshop on Monte Carlo Methods held at The Fields Institute for Research in Mathematical Sciences (Toronto, 1998). The workshop brought together researchers in physics, statistics, and probability. The papers in this volume - of the invited speakers and contributors to the poster session - represent the interdisciplinary emphasis of the conference. Monte Carlo methods have been used intensively in many branches of scientific inquiry. Markov chain methods have been at the forefront of much of this work, serving as the basis of many numerical studies in statistical physics and related areas since the Metropolis algorithm was introduced in 1953. Statisticians and theoretical computer scientists have used these methods in recent years, working on different fundamental research questions, yet using similar Monte Carlo methodology. This volume focuses on Monte Carlo methods that appear to have wide applicability and emphasizes new methods, practical applications and theoretical analysis. It will be of interest to researchers and graduate students who study and/or use Monte Carlo methods in areas of probability, statistics, theoretical physics, or computer science.


Statistical Approach to Quantum Field Theory

Statistical Approach to Quantum Field Theory

Author: Andreas Wipf

Publisher: Springer Nature

Published: 2021-10-25

Total Pages: 568

ISBN-13: 3030832635

DOWNLOAD EBOOK

This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.


Quantum Monte Carlo Methods

Quantum Monte Carlo Methods

Author: James Gubernatis

Publisher: Cambridge University Press

Published: 2016-06-02

Total Pages: 503

ISBN-13: 1316483126

DOWNLOAD EBOOK

Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques.


Markov Chain Monte Carlo

Markov Chain Monte Carlo

Author: W. S. Kendall

Publisher: World Scientific

Published: 2005

Total Pages: 239

ISBN-13: 9812564276

DOWNLOAD EBOOK

Markov Chain Monte Carlo (MCMC) originated in statistical physics, but has spilled over into various application areas, leading to a corresponding variety of techniques and methods. That variety stimulates new ideas and developments from many different places, and there is much to be gained from cross-fertilization. This book presents five expository essays by leaders in the field, drawing from perspectives in physics, statistics and genetics, and showing how different aspects of MCMC come to the fore in different contexts. The essays derive from tutorial lectures at an interdisciplinary program at the Institute for Mathematical Sciences, Singapore, which exploited the exciting ways in which MCMC spreads across different disciplines.