This book presents the outcomes from the 2nd International Conference on Marine and Advanced Technologies 2021 (Icmat2021) which was organized by the Research and Innovation section, University Kuala Lumpur - Malaysian Institute of Marine Engineering Technology. The theme “Propelling to the Innovative Idea” highlights prominence of recent developments in marine and advanced technologies in the field of marine application, maritime operation, energy and reliability, advanced materials and applied science. This online conference provided a platform for presentations and discussions at the local and international level between educationists, researchers, students, and industrialists. Furthermore, it created opportunities to establish networks and meet experts in addition to exchange of up-to-date knowledge in the field. This book is the up-to-date reference, especially to those who want to learn and explore more about the latest developments and technologies of maritime industries.
This textbook covers in detail digitally-driven methods for adding materials together to form parts. A conceptual overview of additive manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Well-established and emerging applications such as rapid prototyping, micro-scale manufacturing, medical applications, aerospace manufacturing, rapid tooling and direct digital manufacturing are also discussed. This book provides a comprehensive overview of additive manufacturing technologies as well as relevant supporting technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. Reflects recent developments and trends and adheres to the ASTM, SI and other standards; Includes chapters on topics that span the entire AM value chain, including process selection, software, post-processing, industrial drivers for AM, and more; Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered.
This book presents wire arc additive manufacturing (WAAM), its variants, processing steps, and the mechanical and microstructural aspects of developed components, along with a logical sequence that provides a ready reference. Wire Arc Additive Manufacturing: Fundamental Sciences and Advances introduces the timeline and history of WAAM. It offers a critical review of WAAM, its variants, processing steps, and the mechanical and microstructural aspects of developed components. The book showcases the methods and practices that need to be followed to synchronise WAAM with other conventional metal additive manufacturing, as well as other conventional techniques. The process steps, equipment, and the different materials used are discussed in detail, along with the various process parameters and their optimisation to counter the challenges and defects. Applications, trends, and case studies are also included in the book. This book, aimed at providing a concrete reference for researchers, academics, and professionals, allows for a thorough understanding of the different concepts and intricacies of WAAM.
Additive Manufacturing for the Aerospace Industry explores the design, processing, metallurgy and applications of additive manufacturing (AM) within the aerospace industry. The book's editors have assembled an international team of experts who discuss recent developments and the future prospects of additive manufacturing. The work includes a review of the advantages of AM over conventionally subtractive fabrication, including cost considerations. Microstructures and mechanical properties are also presented, along with examples of components fabricated by AM. Readers will find information on a broad range of materials and processes used in additive manufacturing. It is ideal reading for those in academia, government labs, component fabricators, and research institutes, but will also appeal to all sectors of the aerospace industry. - Provides information on a broad range of materials and processes used in additive manufacturing - Presents recent developments in the design and applications of additive manufacturing specific to the aerospace industry - Covers a wide array of materials for use in the additive manufacturing of aerospace parts - Discusses current standards in the area of aerospace AM parts
These proceedings exchange ideas and knowledge among engineers, designers and managers on how to support real-world value chains by developing additive manufactured series products. The papers from the conference show a holistic, multidisciplinary view.
Developments in the Analysis and Design of Marine Structures is a collection of papers presented at MARSTRUCT 2021, the 8th International Conference on Marine Structures (by remote transmission, 7-9 June 2021, organised by the Department of Marine Technology of the Norwegian University of Science and Technology, Trondheim, Norway), and is essential reading for academics, engineers and professionals involved in the design of marine and offshore structures. The MARSTRUCT Conference series deals with Ship and Offshore Structures, addressing topics in the fields of: - Methods and Tools for Loads and Load Effects; - Methods and Tools for Strength Assessment; - Experimental Analysis of Structures; - Materials and Fabrication of Structures; - Methods and Tools for Structural Design and Optimisation; and - Structural Reliability, Safety and Environmental Protection. The MARSTRUCT conferences series of started in Glasgow, UK in 2007, the second event of the series took place in Lisbon, Portugal in March 2009, the third in Hamburg, Germany in March 2011, the fourth in Espoo, Finland in March 2013, the fifth in Southampton, UK in March 2015, the sixth in Lisbon, Portugal in May 2017, and the seventh in Drubovnik, Croatia in May 2019. The ‘Proceedings in Marine Technology and Ocean Engineering’ series is dedicated to the publication of proceedings of peer-reviewed international conferences dealing with various aspects of ‘Marine Technology and Ocean Engineering’. The Series includes the proceedings of the following conferences: the International Maritime Association of the Mediterranean (IMAM) conferences, the Marine Structures (MARSTRUCT) conferences, the Renewable Energies Offshore (RENEW) conferences and the Maritime Technology (MARTECH) conferences. The ‘Marine Technology and Ocean Engineering’ series is also open to new conferences that cover topics on the sustainable exploration and exploitation of marine resources in various fields, such as maritime transport and ports, usage of the ocean including coastal areas, nautical activities, the exploration and exploitation of mineral resources, the protection of the marine environment and its resources, and risk analysis, safety and reliability. The aim of the series is to stimulate advanced education and training through the wide dissemination of the results of scientific research.
This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI). The Editors Prof. Dr.-Ing. Thorsten Schüppstuhl is head of the Institute of Aircraft Production Technology (IFPT) at the Hamburg University of Technology. Prof. Dr.-Ing. Kirsten Tracht is head of the Bremen Institute for Mechanical Engineering (bime) at the University of Bremen. Prof. Dr.-Ing. Annika Raatz is head of the Institute of Assembly Technology (match) at the Leibniz University Hannover.
Additive manufacturing (AM) of metals and composites using laser energy, direct energy deposition, electron beam methods, and wire arc melting have recently gained importance due to their advantages in fabricating the complex structure. Today, it has become possible to reliably manufacture dense parts with certain AM processes for many materials, including steels, aluminum and titanium alloys, superalloys, metal-based composites, and ceramic matrix composites. In the near future, the AM material variety will most likely grow further, with high-performance materials such as intermetallic compounds and high entropy alloys already under investigation. Additive Manufacturing Applications for Metals and Composites is a pivotal reference source that provides vital research on advancing methods and technological developments within additive manufacturing practices. Special attention is paid to the material design of additive manufacturing of parts, the choice of feedstock materials, the metallurgical behavior and synthesis principle during the manufacturing process, and the resulted microstructures and properties, as well as the relationship between these factors. While highlighting topics such as numerical modeling, intermetallic compounds, and statistical techniques, this publication is ideally designed for students, engineers, researchers, manufacturers, technologists, academicians, practitioners, scholars, and educators.
Design of Marine Risers with Functionally Graded Materials focuses on the application and use of marine risers fabricated with functionally graded materials (FGM) in ocean environments. Chapters cover the various types of marine risers available, common problems (corrosion), their fabrication and manufacturing, and their application and use in marine risers. A functionally graded materials mould is then subsequently investigated by various structural and metallurgical examinations to assess its suitability as an alternate material in the marine environment. Several characteristics of the newly developed FGM are compared with other conventional materials to explicitly highlight the superiority of the newly developed FGM. Further chapters focus on novel design methods, such as VIV suppression systems for risers with detailed experimental investigations carried out on cylinders and a chapter on advanced materials, including titanium and composites and their application and use in the marine environment. - Covers all types of marine risers, materials, properties and behavior - Features advances in design for functionally graded materials in marine risers and offshore structures - Includes new additive manufacturing techniques and the design of vortex induced vibrations in marine risers
This report supplies information on joining processes applicable to titanium and its alloys in sheet metal applications, primarily related directly to airframe construction. Although the material presented here does not cover all titanium joining processes, and omits such processes as plasma-arc, submerged-arc, electroslag, flash, and high-frequency resistance welding, the data presented cover materials up to 2-inches thick in some cases and the report should be useful to anyone seeking titanium joining information. The joining processes covered fall into five categories: welding, brazing, metallurgical bonding (diffusion and deformation bonding), adhesive bonding, and mechanical fastening. The fusion welding processes that are discussed in detail include gas tungsten arc, gas metal arc, arc spot, and electron beam. The resistance processes give extended coverage are spot, roll spot, and seam welding. (Author).