The Manual of Bridge Engineering

The Manual of Bridge Engineering

Author: M. J. Ryall

Publisher: Thomas Telford

Published: 2000

Total Pages: 1046

ISBN-13: 9780727727749

DOWNLOAD EBOOK

- Bridge type, behaviour and appearance David Bennett, David Bennett Associates · History of bridge development · Bridge form · Behaviour - Loads and load distribution Mike Ryall, University of Surrey · Brief history of loading specifications · Current code specification · Load distribution concepts · Influence lines - Analysis Professor R Narayanan, Consulting Engineer · Simple beam analysis · Distribution co-efficients · Grillage method · Finite elements · Box girder analysis: steel and concrete · Dynamics - Design of reinforced concrete bridges Dr Paul Jackson, Gifford and Partners · Right slab · Skew slab · Beam and slab · Box - Design of prestressed concrete bridges Nigel Hewson, Hyder Consulting · Pretensioned beams · Beam and slab · Pseduo slab · Post tensioned concrete beams · Box girders - Design of steel bridges Gerry Parke and John Harding, University of Surrey · Plate girders · Box girders · Orthotropic plates · Trusses - Design of composite bridges David Collings, Robert Benaim and Associates · Steel beam and concrete · Steel box and concrete · Timber and concrete - Design of arch bridges Professor Clive Melbourne, University of Salford · Analysis · Masonry · Concrete · Steel · Timber - Seismic analysis of design Professor Elnashai, Imperial College of Science, Technology and Medicine · Modes of failure in previous earthquakes · Conceptual design issues · Brief review of seismic design codes - Cable stayed bridges - Daniel Farquhar, Mott Macdonald · Analysis · Design · Construction - Suspension bridges Vardaman Jones and John Howells, High Point Rendel · Analysis · Design · Construction - Moving bridges Charles Birnstiel, Consulting engineer · History · Types · Special problems - Substructures Peter Lindsell, Peter Lindsell and Associates · Abutments · Piers - Other structural elements Robert Broome et al, WS Atkins · Parapets · Bearings · Expansion joints - Protection Mike Mulheren, University of Surrey · Drainage · Waterproofing · Protective coating/systems for concrete · Painting system for steel · Weathering steel · Scour protection · Impact protection - Management systems and strategies Perrie Vassie, Transport Research Laboratory · Inspection · Assessment · Testing · Rate of deterioration · Optimal maintenance programme · Prioritisation · Whole life costing · Risk analysis - Inspection, monitoring, and assessment Charles Abdunur, Laboratoire Central Des Ponts et Chaussées · Main causes of deterioration · Investigation methods · Structural evaluation tests · Stages of structural assessment · Preparing for recalculation - Repair and Strengthening John Darby, Consulting Engineer · Repair of concrete structures · Metal structures · Masonry structures · Replacement of structures


Innovative Bridge Design Handbook

Innovative Bridge Design Handbook

Author: Alessio Pipinato

Publisher: Butterworth-Heinemann

Published: 2015-12-05

Total Pages: 878

ISBN-13: 9780128000588

DOWNLOAD EBOOK

As known, each bridge presents a unique set of design, construction, and maintenance challenges. The designer must determine the appropriate methods and level of refinement necessary to design and analyze each bridge on a case-by-case basis. The Innovative Bridge Design Handbook: Construction, Rehabilitation, and Maintenance encompasses the state of the art in bridge design, construction, maintenance, and safety assessment. Written by an international group of experts, this book provides innovative design approaches used in various parts of the world and explores concepts in design, construction, and maintenance that will reduce project costs and increase structural safety and durability. Furthermore, research and innovative solutions are described throughout chapters. The Innovative Bridge Design Handbook: Construction, Rehabilitation, and Maintenance brings together the specific knowledge of a bevy of experts and academics in bridge engineering in the areas of design, assessment, research, and construction. The handbook begins with an analysis of the history and development of bridge aesthetics and design; various types of loads including seismic and wind loads are then described, together with fatigue and fracture. Bridge design based on material such as reinforced concrete, prestressed reinforced concrete, steel and composite, timber, masonry bridges is analyzed and detailed according to international codes and standards. Then bridge design based on geometry, such as arch bridges, girders, cable stayed and suspension bridges, is illustrated. This is followed by a discussion of a number of special topics, including integral, movable, highway and railway bridges, together with seismic component devices, cables, orthotropic decks, foundations, and case studies. Finally, bridge construction equipment, bridge assessment retrofit and management, bridge monitoring, fiber-reinforced polymers to reinforce bridges, bridge collapse issues are covered. Loads including seismic and wind loads, fatigue and fracture, local effects Structural analysis including numerical methods (FEM), dynamics, risk and reliability, innovative structural typologies Bridge design based on material type: RC and PRC, steel and composite, timber and masonry bridges Bridge design based on geometry: arch bridges, girders, cable stayed and suspension bridges Special topics: integral, movable, highway, railway bridges, seismic component devices, cables, orthotropic decks, foundations Construction including construction case studies, construction equipment, bridge assessment, bridge management, retrofit and strengthening, monitoring procedures


Bridge Design and Evaluation

Bridge Design and Evaluation

Author: Gongkang Fu

Publisher: John Wiley & Sons

Published: 2013-01-25

Total Pages: 448

ISBN-13: 1118329937

DOWNLOAD EBOOK

A succinct, real-world approach to complete bridge system design and evaluation Load and Resistance Factor Design (LRFD) and Load and Resistance Factor Rating (LRFR) are design and evaluation methods that have replaced or offered alternatives to other traditional methods as the new standards for designing and load-rating U.S. highway bridges. Bridge Design and Evaluation covers complete bridge systems (substructure and superstructure) in one succinct, manageable package. It presents real-world bridge examples demonstrating both their design and evaluation using LRFD and LRFR. Designed for a 3- to 4-credit undergraduate or graduate-level course, it presents the fundamentals of the topic without expanding needlessly into advanced or specialized topics. Important features include: Exclusive focus on LRFD and LRFR Hundreds of photographs and figures of real bridges to connect the theoretical with the practical Design and evaluation examples from real bridges including actual bridge plans and drawings and design methodologies Numerous exercise problems Specific design for a 3- to 4-credit course at the undergraduate or graduate level The only bridge engineering textbook to cover the important topics of bridge evaluation and rating Bridge Design and Evaluation is the most up-to-date and inclusive introduction available for students in civil engineering specializing in structural and transportation engineering.


Bridge Design, Assessment and Monitoring

Bridge Design, Assessment and Monitoring

Author: Airong Chen

Publisher: Routledge

Published: 2018-12-07

Total Pages: 275

ISBN-13: 1351208772

DOWNLOAD EBOOK

Bridges play important role in modern infrastructural system. This book provides an up-to-date overview of the field of bridge engineering, as well as the recent significant contributions to the process of making rational decisions in bridge design, assessment and monitoring and resources optimization deployment for the purpose of enhancing the welfare of society. Tang specifies the purposes and requirements of the conceptual bridge design, considering bridge types, basic elements, structural systems and load conditions. Cremona and Poulin propose an assessment procedure for existing bridges. Kallias et al. develop a framework for the performance assessment of metallic bridges under atmospheric exposure by integrating coating deterioration and corrosion modelling. Soriano et al. employ a simplified approach to estimate the maximum traffic load effect on a highway bridge and compare the results with other approaches based on on-site weigh-in-motion data. Akiyama et al. propose a method for reliability-based durability design and service life assessment of reinforced concrete deck slab of jetty structures. Chen et al. propose a meso-scale model to simulate the uniform and pitting corrosion of rebar in concrete and to obtain the crack patterns of the concrete with different rebar arrangements. Ruan et al. present a traffic load model for long span multi-pylon cable- stayed bridges. Khuc and Catbas implement a non-target vision- based method for the measurement of both static and dynamic displacements time histories. Finally, Cruz presents the career of the outstanding bridge engineer Edgar Cardoso in the fields of bridge design and experimental analysis. The book serves as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers, engineers, consultants and contractors from all areas sections of bridge engineering. The chapters originally published as a special issue in Structure and Infrastructure Engineering.


Innovative Bridge Design Handbook

Innovative Bridge Design Handbook

Author: Alessio Pipinato

Publisher: Butterworth-Heinemann

Published: 2015-11-11

Total Pages: 880

ISBN-13: 0128004878

DOWNLOAD EBOOK

As known, each bridge presents a unique set of design, construction, and maintenance challenges. The designer must determine the appropriate methods and level of refinement necessary to design and analyze each bridge on a case-by-case basis. The Innovative Bridge Design Handbook: Construction, Rehabilitation, and Maintenance encompasses the state of the art in bridge design, construction, maintenance, and safety assessment. Written by an international group of experts, this book provides innovative design approaches used in various parts of the world and explores concepts in design, construction, and maintenance that will reduce project costs and increase structural safety and durability. Furthermore, research and innovative solutions are described throughout chapters. The Innovative Bridge Design Handbook: Construction, Rehabilitation, and Maintenance brings together the specific knowledge of a bevy of experts and academics in bridge engineering in the areas of design, assessment, research, and construction. The handbook begins with an analysis of the history and development of bridge aesthetics and design; various types of loads including seismic and wind loads are then described, together with fatigue and fracture. Bridge design based on material such as reinforced concrete, prestressed reinforced concrete, steel and composite, timber, masonry bridges is analyzed and detailed according to international codes and standards. Then bridge design based on geometry, such as arch bridges, girders, cable stayed and suspension bridges, is illustrated. This is followed by a discussion of a number of special topics, including integral, movable, highway and railway bridges, together with seismic component devices, cables, orthotropic decks, foundations, and case studies. Finally, bridge construction equipment, bridge assessment retrofit and management, bridge monitoring, fiber-reinforced polymers to reinforce bridges, bridge collapse issues are covered. Loads including seismic and wind loads, fatigue and fracture, local effects Structural analysis including numerical methods (FEM), dynamics, risk and reliability, innovative structural typologies Bridge design based on material type: RC and PRC, steel and composite, timber and masonry bridges Bridge design based on geometry: arch bridges, girders, cable stayed and suspension bridges Special topics: integral, movable, highway, railway bridges, seismic component devices, cables, orthotropic decks, foundations Construction including construction case studies, construction equipment, bridge assessment, bridge management, retrofit and strengthening, monitoring procedures


Bridge Design

Bridge Design

Author: António J. Reis

Publisher: John Wiley & Sons

Published: 2019-04-01

Total Pages: 668

ISBN-13: 1118927648

DOWNLOAD EBOOK

A comprehensive guide to bridge design Bridge Design - Concepts and Analysis provides a unique approach, combining the fundamentals of concept design and structural analysis of bridges in a single volume. The book discusses design solutions from the authors’ practical experience and provides insights into conceptual design with concrete, steel or composite bridge solutions as alternatives. Key features: Principal design concepts and analysis are dealt with in a unified approach. Execution methods and evolution of the static scheme during construction are dealt with for steel, concrete and composite bridges. Aesthetics and environmental integration of bridges are considered as an issue for concept design. Bridge analysis, including modelling and detail design aspects, is discussed for different bridge typologies and structural materials. Specific design verification aspects are discussed on the basis of present design rules in Eurocodes. The book is an invaluable guide for postgraduate students studying bridge design, bridge designers and structural engineers.


Engineering for Structural Stability in Bridge Construction

Engineering for Structural Stability in Bridge Construction

Author: Federal Highway Federal Highway Administration

Publisher:

Published: 2020-07-19

Total Pages: 669

ISBN-13:

DOWNLOAD EBOOK

This manual is intended to serve as a reference. It will provide technical information which will enable Manual users to perform the following activities:Describe typical erection practices for girder bridge superstructures and recognize critical construction stagesDiscuss typical practices for evaluating structural stability of girder bridge superstructures during early stages of erection and throughout bridge constructionExplain the basic concepts of stability and why it is important in bridge erection* Explain common techniques for performing advanced stability analysis along with their advantages and limitationsDescribe how differing construction sequences effect superstructure stabilityBe able to select appropriate loads, load combinations, and load factors for use in analyzing superstructure components during constructionBe able to analyze bridge members at various stages of erection* Develop erection plans that are safe and economical, and know what information is required and should be a part of those plansDescribe the differences between local, member and global (system) stability


Bridge Engineering Handbook, Second Edition

Bridge Engineering Handbook, Second Edition

Author: Wai-Fah Chen

Publisher: CRC Press

Published: 2014-01-24

Total Pages: 664

ISBN-13: 1439852081

DOWNLOAD EBOOK

Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of the Bridge Engineering Handbook. This extensive collection highlights bridge engineering specimens from around the world, contains detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject. Published in five books: Fundamentals, Superstructure Design, Substructure Design, Seismic Design, and Construction and Maintenance, this new edition provides numerous worked-out examples that give readers step-by-step design procedures, includes contributions by leading experts from around the world in their respective areas of bridge engineering, contains 26 completely new chapters, and updates most other chapters. It offers design concepts, specifications, and practice, as well as the various types of bridges. The text includes over 2,500 tables, charts, illustrations, and photos. The book covers new, innovative and traditional methods and practices; explores rehabilitation, retrofit, and maintenance; and examines seismic design and building materials. The fifth book, Construction and Maintenance contains 19 chapters, and covers the practical issues of bridge structures. What’s New in the Second Edition: Includes nine new chapters: Steel Bridge Fabrication, Cable-Supported Bridge Construction, Accelerated Bridge Construction, Bridge Management Using Pontis and Improved Concepts, Bridge Maintenance, Bridge Health Monitoring, Nondestructive Evaluation Methods for Bridge Elements, Life-Cycle Performance Analysis and Optimization, and Bridge Construction Methods Rewrites the Bridge Construction Inspection chapter and retitles it as: Bridge Construction Supervision and Inspection Expands and rewrites the Maintenance Inspection and Rating chapter into three chapters: Bridge Inspection, Steel Bridge Evaluation and Rating, and Concrete Bridge Evaluation and Rating; and the Strengthening and Rehabilitation chapter into two chapters: Rehabilitation and Strengthening of Highway Bridge Superstructures, and Rehabilitation and Strengthening of Orthotropic Steel Bridge Decks This text is an ideal reference for practicing bridge engineers and consultants (design, construction, maintenance), and can also be used as a reference for students in bridge engineering courses.