Manifolds with Group Actions and Elliptic Operators

Manifolds with Group Actions and Elliptic Operators

Author: Vladimir I︠A︡kovlevich Lin

Publisher: American Mathematical Soc.

Published: 1994

Total Pages: 90

ISBN-13: 0821826042

DOWNLOAD EBOOK

This work studies equivariant linear second order elliptic operators [italic capital]P on a connected noncompact manifold [italic capital]X with a given action of a group [italic capital]G. The action is assumed to be cocompact, meaning that [italic capitals]GV = [italic capital]X for some compact subset of [italic capital]V of [italic capital]X. The aim is to study the structure of the convex cone of all positive solutions of [italic capital]P[italic]u = 0.


Pseudo-Differential Operators, Generalized Functions and Asymptotics

Pseudo-Differential Operators, Generalized Functions and Asymptotics

Author: Shahla Molahajloo

Publisher: Springer Science & Business Media

Published: 2013-02-26

Total Pages: 371

ISBN-13: 3034805853

DOWNLOAD EBOOK

This volume consists of twenty peer-reviewed papers from the special session on pseudodifferential operators and the special session on generalized functions and asymptotics at the Eighth Congress of ISAAC held at the Peoples’ Friendship University of Russia in Moscow on August 22‒27, 2011. The category of papers on pseudo-differential operators contains such topics as elliptic operators assigned to diffeomorphisms of smooth manifolds, analysis on singular manifolds with edges, heat kernels and Green functions of sub-Laplacians on the Heisenberg group and Lie groups with more complexities than but closely related to the Heisenberg group, Lp-boundedness of pseudo-differential operators on the torus, and pseudo-differential operators related to time-frequency analysis. The second group of papers contains various classes of distributions and algebras of generalized functions with applications in linear and nonlinear differential equations, initial value problems and boundary value problems, stochastic and Malliavin-type differential equations. This second group of papers are related to the third collection of papers via the setting of Colombeau-type spaces and algebras in which microlocal analysis is developed by means of techniques in asymptotics. The volume contains the synergies of the three areas treated and is a useful complement to volumes 155, 164, 172, 189, 205 and 213 published in the same series in, respectively, 2004, 2006, 2007, 2009, 2010 and 2011.


Surveys in Noncommutative Geometry

Surveys in Noncommutative Geometry

Author: Nigel Higson

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 212

ISBN-13: 9780821838464

DOWNLOAD EBOOK

In June 2000, the Clay Mathematics Institute organized an Instructional Symposium on Noncommutative Geometry in conjunction with the AMS-IMS-SIAM Joint Summer Research Conference. These events were held at Mount Holyoke College in Massachusetts from June 18 to 29, 2000. The Instructional Symposium consisted of several series of expository lectures which were intended to introduce key topics in noncommutative geometry to mathematicians unfamiliar with the subject. Those expository lectures have been edited and are reproduced in this volume. The lectures of Rosenberg and Weinberger discuss various applications of noncommutative geometry to problems in ``ordinary'' geometry and topology. The lectures of Lagarias and Tretkoff discuss the Riemann hypothesis and the possible application of the methods of noncommutative geometry in number theory. Higson gives an account of the ``residue index theorem'' of Connes and Moscovici. Noncommutative geometry is to an unusual extent the creation of a single mathematician, Alain Connes. The present volume gives an extended introduction to several aspects of Connes' work in this fascinating area. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).


Elliptic Curves and Modular Forms in Algebraic Topology

Elliptic Curves and Modular Forms in Algebraic Topology

Author: Peter S. Landweber

Publisher: Springer

Published: 2006-11-15

Total Pages: 232

ISBN-13: 3540393005

DOWNLOAD EBOOK

A small conference was held in September 1986 to discuss new applications of elliptic functions and modular forms in algebraic topology, which had led to the introduction of elliptic genera and elliptic cohomology. The resulting papers range, fom these topics through to quantum field theory, with considerable attention to formal groups, homology and cohomology theories, and circle actions on spin manifolds. Ed. Witten's rich article on the index of the Dirac operator in loop space presents a mathematical treatment of his interpretation of elliptic genera in terms of quantum field theory. A short introductory article gives an account of the growth of this area prior to the conference.


Group Actions on Manifolds

Group Actions on Manifolds

Author: Reinhard Schultz

Publisher: American Mathematical Soc.

Published: 1985

Total Pages: 586

ISBN-13: 0821850385

DOWNLOAD EBOOK

Presents an understanding of the sorts of problems one studies in group actions and the methods used to study such problems. This book features articles based upon lectures at the 1983 AMS-IMS-SIAM Joint Summer Research Conference, Group Actions on Manifolds, held at the University of Colorado.