Since the first TRP ion channel was discovered in Drosophila melanogaster in 1989, the progress made in this area of signaling research has yielded findings that offer the potential to dramatically impact human health and wellness. Involved in gateway activity for all five of our senses, TRP channels have been shown to respond to a wide range of st
TRP Channels as Therapeutic Targets: From Basic Science to Clinical Use is authored by experts across academia and industry, providing readers with a complete picture of the therapeutic potential and challenges associated with using TRP channels as drug targets. This book offers a unique clinical approach by covering compounds that target TRP channels in pre-clinical and clinical phases, also offering a discussion of TRP channels as biomarkers. An entire section is devoted to the novel and innovative uses of these channels across a variety of diseases, offering strategies that can be used to overcome the adverse effects of first generation TRPV1 antagonists. Intended for all researchers and clinicians working toward the development of successful drugs targeting TRP channels, this book is an essential resource chocked full of the latest clinical data and findings. - Contains comprehensive coverage of TRP channels as therapeutic targets, from emerging clinical indications to completed clinical trials - Discusses TRP channels as validated targets, ranging from obesity and diabetes through cancer and respiratory disorders, kidney diseases, hypertension, neurodegenerative disorders, and more - Provides critical analysis of the complications and side effects that have surfaced during clinical trials, offering evidence-based suggestions for overcoming them
In this fast moving field the main goal of this volume is to provide up-to-date information on the molecular and functional properties and pharmacology of mammalian TRP channels. Leading experts in the field describe properties of a single TRP protein/channel or portray more general principles of TRP function and important pathological situations linked to mutations of TRP genes or their altered expression. Thereby this volume on Transient Receptor Potential (TRP) Channels provides valuable information for readers with different expectations and backgrounds, for those who are approaching this field of research as well as for those wanting to make a trip to TRPs.
The rapid expansion of the TRP field has generated a large amount of excellent original work across many different research fields. However, investigators are not necessarily familiar with the pros and cons of the variety of methods used to study TRP channels. Because of functional and genetic diversity, as well as the different physiological roles
This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.
This book brings together contributions from key investigators in the area of Transient Receptor Potential (TRP) channel structure and function. It covers the structure, function and regulation of mammalian TRP channels and mechanisms of signal transduction. The discussions indicate research that would improve understanding of the role of TRP channels in normal cellular physiology, the involvement of TRP channels in disease states and their potential use as molecular targets for novel therapeutic agents.
This volume provides up-to-date information on the molecular and functional properties and pharmacology of mammalian TRP channels. Leading experts in the field have written 35 essays which describe properties of a single TRP protein/channel or portray more general principles of TRP function and important pathological situations linked to mutations of TRP genes or their altered expression.
The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.
Genetic approaches have revolutionized our understanding of the fundamental causes of human disease by permitting the identification of specific genes in which variation causes or contributes to susceptibility to, or protection from, disease. More than 2,000 disease genes have been identified in the last 20 years, providing important new insight into the pathophysiology of diseases in every field of medicine. Genetic Diseases of the Kidney offers expert insight into the role of genetic abnormalities in the pathogenesis of abnormal kidney function and kidney disease. Genetic abnormalities are carefully presented within the appropriate physiologic context so that readers will understand not only which genes are linked to which diseases but also which pathways lead from a genetic "disturbance to the systemic appearance of disease. - Lays the essential foundation of mammalian genetics principles for medical professionals with little or no background in genetics - Analyzes specific renal diseases – both monogenic disorders confined to the kidney and systemic diseases with renal involvement – and explains their genetic causes - World-renowned editors and authors offer expert frameworks for understanding the links between genes and complex clinical disorders (i.e., lupus, diabetes, HIV, and hypertension)
A number of techniques to study ion channels have been developed since the electrical basis of excitability was first discovered. Ion channel biophysicists have at their disposal a rich and ever-growing array of instruments and reagents to explore the biophysical and structural basis of sodium channel behavior. Armed with these tools, researchers have made increasingly dramatic discoveries about sodium channels, culminating most recently in crystal structures of voltage-gated sodium channels from bacteria. These structures, along with those from other channels, give unprecedented insight into the structural basis of sodium channel function. This volume of the Handbook of Experimental Pharmacology will explore sodium channels from the perspectives of their biophysical behavior, their structure, the drugs and toxins with which they are known to interact, acquired and inherited diseases that affect sodium channels and the techniques with which their biophysical and structural properties are studied.