Magnetohydrodynamics of the Sun

Magnetohydrodynamics of the Sun

Author: Eric Priest

Publisher: Cambridge University Press

Published: 2014-04-07

Total Pages: 581

ISBN-13: 0521854717

DOWNLOAD EBOOK

This advanced textbook reviews the complex interaction between the Sun's plasma atmosphere and its magnetic field.


Solar Magnetohydrodynamics

Solar Magnetohydrodynamics

Author: E.R. Priest

Publisher: Springer

Published: 1984-07-31

Total Pages: 469

ISBN-13: 9027718334

DOWNLOAD EBOOK

I have felt the need for a book on the theory of solar magnetic fields for some time now. Most books about the Sun are written by observers or by theorists from other branches of solar physics, whereas those on magnetohydrodynamics do not deal extensively with solar applications. I had thought of waiting a few decades before attempting to put pen to paper, but one summer Josip Kleczek encouraged an im mediate start 'while your ideas are still fresh'. The book grew out of a postgraduate lecture course at St Andrews, and the resulting period of gestation or 'being with monograph' has lasted several years. The Sun is an amazing object, which has continued to reveal completely unexpected features when observed in greater detail or at new wavelengths. What riches would be in store for us if we could view other stars with as much precision! Stellar physics itself is benefiting greatly from solar discoveries, but, in tum, our understanding of many solar phenomena (such as sunspots, sunspot cycles, the corona and the solar wind) will undoubtedly increase in the future due to their observation under different conditions in other stars. In the 'old days' the solar atmosphere was regarded as a static, plane-parallel structure, heated by the dissipation of sound waves and with its upper layer expanding in a spherically symmetric manner as the solar wind. Outside of sunspots the magnetic field was thOUght to be unimportant with a weak uniform value of a few gauss.


MHD Waves in the Solar Atmosphere

MHD Waves in the Solar Atmosphere

Author: Bernard Roberts

Publisher: Cambridge University Press

Published: 2019-07-18

Total Pages: 529

ISBN-13: 1108427669

DOWNLOAD EBOOK

Develops a fresh mathematical approach to coronal seismology, explaining oscillatory phenomena by drawing upon original research and complex modelling techniques.


Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere

Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere

Author: Xueshang Feng

Publisher: Springer

Published: 2019-08-01

Total Pages: 785

ISBN-13: 9811390819

DOWNLOAD EBOOK

The book covers intimately all the topics necessary for the development of a robust magnetohydrodynamic (MHD) code within the framework of the cell-centered finite volume method (FVM) and its applications in space weather study. First, it presents a brief review of existing MHD models in studying solar corona and the heliosphere. Then it introduces the cell-centered FVM in three-dimensional computational domain. Finally, the book presents some applications of FVM to the MHD codes on spherical coordinates in various research fields of space weather, focusing on the development of the 3D Solar-InterPlanetary space-time Conservation Element and Solution Element (SIP-CESE) MHD model and its applications to space weather studies in various aspects. The book is written for senior undergraduates, graduate students, lecturers, engineers and researchers in solar-terrestrial physics, space weather theory, modeling, and prediction, computational fluid dynamics, and MHD simulations. It helps readers to fully understand and implement a robust and versatile MHD code based on the cell-centered FVM.


Magnetohydrodynamics of the Sun

Magnetohydrodynamics of the Sun

Author: Eric Priest

Publisher: Cambridge University Press

Published: 2014-04-07

Total Pages: 581

ISBN-13: 110778266X

DOWNLOAD EBOOK

Magnetohydrodynamics of the Sun is a completely new up-to-date rewrite from scratch of the 1982 book Solar Magnetohydrodynamics, taking account of enormous advances in understanding since that date. It describes the subtle and complex interaction between the Sun's plasma atmosphere and its magnetic field, which is responsible for many fascinating dynamic phenomena. Chapters cover the generation of the Sun's magnetic field by dynamo action, magnetoconvection and the nature of photospheric flux tubes such as sunspots, the heating of the outer atmosphere by waves or reconnection, the structure of prominences, the nature of eruptive instability and magnetic reconnection in solar flares and coronal mass ejections, and the acceleration of the solar wind by reconnection or wave-turbulence. It is essential reading for graduate students and researchers in solar physics and related fields of astronomy, plasma physics and fluid dynamics. Problem sets and other resources are available at www.cambridge.org/9780521854719.


Turbulence in Magnetohydrodynamics

Turbulence in Magnetohydrodynamics

Author: Andrey Beresnyak

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-08

Total Pages: 391

ISBN-13: 3110392240

DOWNLOAD EBOOK

Magnetohydrodynamics describes dynamics in electrically conductive fluids. These occur in our environment as well as in our atmosphere and magnetosphere, and play a role in the sun's interaction with our planet. In most cases these phenomena involve turbulences, and thus are very challenging to understand and calculate. A sound knowledge is needed to tackle these problems. This work gives the basic information on turbulence in nature, comtaining the needed equations, notions and numerical simulations. The current state of our knowledge and future implications of MHD turbulence are outlined systematically. It is indispensable for all scientists engaged in research of our atmosphere and in space science.


Magnetohydrodynamics of the Sun

Magnetohydrodynamics of the Sun

Author: Eric Ronald Priest

Publisher:

Published: 2014

Total Pages: 560

ISBN-13: 9781107779228

DOWNLOAD EBOOK

Magnetohydrodynamics of the Sun is a completely new up-to-date rewrite from scratch of the 1982 book Solar Magnetohydrodynamics, taking account of enormous advances in understanding since that date. It describes the subtle and complex interaction between the Sun's plasma atmosphere and its magnetic field, which is responsible for many fascinating dynamic phenomena. Chapters cover the generation of the Sun's magnetic field by dynamo action, magnetoconvection and the nature of photospheric flux tubes such as sunspots, the heating of the outer atmosphere by waves or reconnection, the structure of prominences, the nature of eruptive instability and magnetic reconnection in solar flares and coronal mass ejections, and the acceleration of the solar wind by reconnection or wave-turbulence. It is essential reading for graduate students and researchers in solar physics and related fields of astronomy, plasma physics and fluid dynamics. Problem sets and other resources are available at www.cambridge.org/9780521854719.


Magnetohydrodynamic Turbulence

Magnetohydrodynamic Turbulence

Author: Dieter Biskamp

Publisher: Cambridge University Press

Published: 2003-07-31

Total Pages: 313

ISBN-13: 1139441671

DOWNLOAD EBOOK

This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressible (in particular, supersonic) turbulence. Because of the similarities in the theoretical approach, these chapters start with a brief account of the corresponding methods developed in hydrodynamic turbulence. The final part of the book is devoted to astrophysical applications: turbulence in the solar wind, in accretion disks, and in the interstellar medium. This book is suitable for graduate students and researchers working in turbulence theory, plasma physics and astrophysics.


Physics of the Solar Corona

Physics of the Solar Corona

Author: Markus Aschwanden

Publisher: Springer Science & Business Media

Published: 2006-01-30

Total Pages: 946

ISBN-13: 9783540307655

DOWNLOAD EBOOK

A thorough introduction to solar physics based on recent spacecraft observations. The author introduces the solar corona and sets it in the context of basic plasma physics before moving on to discuss plasma instabilities and plasma heating processes. The latest results on coronal heating and radiation are presented. Spectacular phenomena such as solar flares and coronal mass ejections are described in detail, together with their potential effects on the Earth.