The author introduces the concept that superconductivity can establish a perfect formalism of electricity and magnetism. The correspondence of electric materials that exhibit perfect electrostatic shielding (E=0) in the static condition and superconductors that show perfect diamagnetism (B=0) is given to help readers understand the relationship between electricity and magnetism. Another helpful aspect with the introduction of the superconductivity feature perfect diamagnetism is that the correspondence in the development of the expression of magnetic energy and electric energy is clearly shown. Additionally, the basic mathematical operation and proofs are shown in an appendix, and there is full use of examples and exercises in each chapter with thorough answers.
A very comprehensive introduction to electricity, magnetism and optics ranging from the interesting and useful history of the science, to connections with current real-world phenomena in science, engineering and biology, to common sense advice and insight on the intuitive understanding of electrical and magnetic phenomena. This is a fun book to read, heavy on relevance, with practical examples, such as sections on motors and generators, as well as `take-home experiments' to bring home the key concepts. Slightly more advanced than standard freshman texts for calculus-based engineering physics courses with the mathematics worked out clearly and concisely. Helpful diagrams accompany the discussion. The emphasis is on intuitive physics, graphical visualization, and mathematical implementation. - Electricity, Magnetism, and Light is an engaging introductory treatment of electromagnetism and optics for second semester physics and engineering majors. - Focuses on conceptual understanding, with an emphasis on relevance and historical development. - Mathematics is specific and avoids unnecessary technical development. - Emphasis on physical concepts, analyzing the electromagnetic aspects of many everyday phenomena, and guiding readers carefully through mathematical derivations. - Provides a wealth of interesting information, from the history of the science of electricity and magnetism, to connections with real world phenomena in science, engineering, and biology, to common sense advice and insight on the intuitive understanding of electrical and magnetic phenomena
Written so as to be understood by the non-technical reader who is curious about the origin of all the electrical and electromagnetic devices that surround him, this history also provides a convenient compendium of information for those familiar with the electrical and magnetic fields. The book moves along at a rapid pace, as it must if it is to cover the enormous proliferation of developments that have occurred during the last hundred years or so.The author has struck a workable balance between the human side of his story, introducing those biographical details that help advance it, and its technical side, explaining theories and "how things work" where this seems appropriate. He also achieves a balance in recounting the discovery of basic scientific principles and their technological applications--the myriad of devices and inventions that utilize energy and information in electromagnetic form.Indeed, one of the important themes of the book is the close and reciprocal relationship between science and technology, between theory and practice. Before approximately 1840, the purely scientific investigations of electrical and magnetic phenomena were largely "ad hoc" and observational, and essentially no technology based on them existed. Afterwards, the scientific explorations became more programmatic and mathematical, and technical applications and inventions began to be produced in great abundance. In return, this technology paid its debt to pure science by providing it with a series of measuring instruments and other research devices that allowed it to advance in parallel.Although this book reviews the early discoveries, from the magnetic lodestone and electrostatic amber of antiquity to Galvani's frog's legs and Franklin's kite-and-key of the 1700s, its major emphasis is on the post-1840 developments, as the following chapter titles will confirm: Early Discoveries--Electrical Machines and Experiments with Static Electricity--Voltaic Electricity, Electrochemistry, Electromagnetism, Galvanometers, Ampere, Biot and Savart, Ohm--Faraday and Henry--Direct Current Dynamos and Motors--Improvements in Batteries, Electrostatic Machines, and Other Older Devices--Electrical Instruments, Laws, and Definitions of Units--The Electric Telegraph--The Atlantic Cable--The Telephone--Electric Lighting--Alternating Currents--Electric Traction--Electromagnetic Waves, Radio, Facsimile, and Television--Microwaves, Radar, Radio Relay, Coaxial Cable, Computers--Plasmas, Masers, Lasers, Fuel Cells, Piezoelectric Crystals, Transistors--X-Rays, Radioactivity, Photoelectric Effect, Structure of the Atom, Spectra.
Describes what electricity is and how it is generated, stored, and used; explains what magnets are and how magnetism works; and discusses how electricity can be used to create magnets.
This is an undergraduate textbook on the physics of electricity, magnetism, and electromagnetic fields and waves. It is written mainly with the physics student in mind, although it will also be of use to students of electrical and electronic engineering. The approach is concise but clear, and the authors have assumed that the reader will be familiar with the basic phenomena. The theory, however, is set out in a completely self-contained and coherent way and developed to the point where the reader can appreciate the beauty and coherence of the Maxwell equations. Throughout, the authors stress the relationships between microscopic structure of matter and the observed macroscopic electric and magnetic fields. The applications cover a wide range of topics, and each chapter ends with a set of problems with answers.
"This book details the science of electricity and magnetism. It explains how these forces work, how they are related, what uses people have found for them, and more."--
Reprint of the original, first published in 1875. The publishing house Anatiposi publishes historical books as reprints. Due to their age, these books may have missing pages or inferior quality. Our aim is to preserve these books and make them available to the public so that they do not get lost.