Proceedings of the March 1997 symposium, the central thrust being the relationship of magnetic properties and device performance to structure at the atomic, nanometer, and submicron length scales in these systems of reduced dimensionality. The 89 contributions cover the following topics: synthesis, processing, and characterization; novel applications and approaches for magnetism; nano-microstructure and magnetic properties; structure and properties--mixing, strain, and steps; nanoscale magnetic confinement, particles, and arrays; magnetization reversal and domain structure; synthesis and characterization; synchrotron radiation studies of magnetic materials; magneto-optical properties, effects, and measurements; magnetic phenomena; CMR and tunneling; and interlayer coupling and spin polarization. Annotation copyrighted by Book News, Inc., Portland, OR
Layered thin film structures often have unusual properties which make them appealing in a wide range of applications. Fabrication of submicron and nanometer multilayers can produce metastable phases that many not be predicted from the bulk equilibrium phase diagrams. Understanding the growth, structure, stability and properties of multilayers, and controlling their microstructure through processing, are important in many applications. This book focuses on the relationship of structure and processing to the properties that are relevant to all researchers in the field of multilayers. Topics include: phase transformation and reaction kinetics; processing and growth; structural characterization; magnetic, electronic and optical properties; mechanical properties; X-ray optics; thin-film interfaces.
Wafer cleaning, microcontamination and surface passivation are the key focus of this proceedings volume, the 3rd in a successful series from MRS. It is a field in which control of surface chemistry and surface morphology, as well as particle and molecular contamination removal, are of critical importance. This volume expands the scope of the topic to include ultraclean technology in a broader sense, emphasizing the identification and characterization of trace contamination, strategies for removal, and equipment considerations, as well as critical limits for impact on devices. Novel processes, such as chemical mechanical polishing (CMP), and their ramifications for contamination removal are also addressed.
Tremendous advances have been made in the use of silicides as contacts and interconnects in micro-electronic devices and as active layers in sensors. A flourish of novel fabrication concepts and characterization techniques has led to high-quality silicide devices and a better understanding of the electronic and micrometallurgical properties of their interfaces. However, the shrinking physical dimensions of ULSI devices beyond the deep submicron regime now poses new and serious materials challenges for the development of manufacturable silicide processes. Scientists and engineers from materials science, physics, chemistry, device, processing and other disciplines come together in this book to examine the current issues facing silicide thin-film applications. Topics include: silicide fundamentals - energetics and kinetics; processing of silicide thin films; ULSI issues; CVD silicides; semiconducting silicides; processing of germano-silicide thin films; silicides and analogs for IR detection; interfaces, surfaces and epitaxy; novel structures and techniques and properties of silicide thin films.
While the effects of spontaneous ordering or composition modulation on the properties of semiconductors and optoelectronic devices have been studied with great interest over the past several years, an understanding of the physics and chemistry of these two related phenomena is still in its infancy. This book brings together researchers from around the world to address issues concerning the physics, chemistry and growth parameters for spontaneous ordering and composition modulation. Developments in the use of artificial patterning to obtain new structured materials on a microscopic scale are featured. Advances in characterization techniques are also presented. Topics include: spontaneous ordering; self-assembled structures and quantum dots; self-organized epitaxial structures; composition modulation studies and optoelectronic materials.
This book reflects the excitement in the scientific community about III-V nitrides. Based on papers presented at the First International Symposium on Gallium Nitride and Related Materials (ISGN-1), it reveals the large amount of work that has taken place since the field exploded with the announcement of commercial blue-light-emitting devices. The compound semiconductors in the III-V nitride systems are of increasing interest for high-performance optoelectronic and electronic device applications. These wide-bandgap semiconductor materials are also of great fundamental scientific interest because of their unique structural, electrical and optical properties. From the advances in the technologies for the heteroepitaxial growth of these materials, leading to improved quality and device performance, it is expected that III-V nitrides will soon be of significant practical and commercial interest. Topics include: crystal growth - substrates and early stages; molecular beam growth techniques; chemical vapor phase and alloys and novel growth techniques; structural properties; electronic properties; optical properties; point defects; hydrogen, etching and other materials processes; surfaces and metal contacts and devices.
Laser processing has been used in a wide variety of applications and materials such as semiconductors, superconductors, ceramics, polymers and metals. Lasers provide a controlled source of atomic and electronic excitations involving nonequilibrium phenomena that lend themselves to processing of novel materials and structures. The range of laser-solid interactions involving electronic excitation, melting and evaporation result in the formation of novel phases, selective gas excitations, surface modification and low-temperature thin-film deposition. This book from MRS focuses on the use of lasers in both the fundamental understanding and applied aspects of laser-solid and laser-gas interactions relevant to materials processing. Applications featured include thin-film transistors formed by laser-induced crystallization of amorphous silicon, diamond coatings and micromachining. Topics include: fundamentals of laser-solid interactions; fundamentals of pulsed laser ablation; pulsed laser deposition; novel applications of laser processing; laser-driven formation of nanocrystals; laser annealing; surface modification and etching; and laser-assisted chemical vapor deposition.