Magnetic Spinels

Magnetic Spinels

Author: Mohindar Seehra

Publisher: BoD – Books on Demand

Published: 2017-03-08

Total Pages: 318

ISBN-13: 9535129732

DOWNLOAD EBOOK

Magnetic spinels including ferrites are insulating magnetic oxides and chalcogenides with strong coupling to microwave frequencies and low eddy current losses making them indispensable for applications in wireless communications. The 13 chapters and preface of this book discuss other potential applications of magnetic spinels along with various methods used for their synthesis and their varied properties resulting from substituting different metal ions at the A and B sites. These applications include ferrofluids, anticorrosion coatings, absorber coatings for photothermal conversion, biomedicine, and environmental applications such as oxidation of volatile organic compounds and removal of arsenic and heavy metals from water. Emphasis is placed on structure-property correlations and on the nature of magnetism in spinels and their nanoparticles with current information provided for future research.


Magnetic Materials and Technologies for Medical Applications

Magnetic Materials and Technologies for Medical Applications

Author: Alexander Tishin

Publisher: Woodhead Publishing

Published: 2021-11-18

Total Pages: 664

ISBN-13: 0128225335

DOWNLOAD EBOOK

The study of electromagnetic fields in the treatment of various diseases is not a new one; however, we are still learning how magnetic fields impact the human body and its organs. Many novel magnetic materials and technologies could potentially transform medicine. Magnetic Materials and Technologies for Medical Applications explores these current and emerging technologies. Beginning with foundational knowledge on the basics of magnetism, this book then details the approaches and methods used in the creation of novel magnetic materials and devices. This book also discusses current technologies and applications, as well as the commercial aspects of introducing new technologies to the field. This book serves as an excellent introduction for early career researchers or a reference to more experienced researchers who wish to stay abreast of current trends and developing technologies in the field. This book could also be used by clinicians working in medicine and companies interested in establishing new medical technologies. Each chapter provides novel tasks for future scientific and technology research studies. - Outlines the basics of magnetism for enhanced understanding of its applications in medicine - Covers novel magnetic devices as well as technologies still under development, including magnetic brain stimulation, biosensors, and nanoparticles for drug delivery - Explores commercial opportunities and obstacles to market entry for new magnetic materials and technologies for the medical field


Modern Ferrite Technology

Modern Ferrite Technology

Author: Alex Goldman

Publisher: Springer Science & Business Media

Published: 2006-09-28

Total Pages: 446

ISBN-13: 0387294139

DOWNLOAD EBOOK

Revision of a classic reference on ferrite technology Includes fundamentals as well as applications Covers new areas such as nanoferrites, new high frequency power supply materials, magnetoresistive ferrites for magnetic recording


Spin Ice

Spin Ice

Author: Masafumi Udagawa

Publisher: Springer Nature

Published: 2021-10-19

Total Pages: 492

ISBN-13: 3030708608

DOWNLOAD EBOOK

This book deals with a new class of magnetic materials, spin ice. Spin ice has become the canonical example of modern frustrated magnetism where competing interactions between spins set the rules for an emergent magnetostatic gauge field theory. Excitations take the form of magnetic monopoles or can condense via a Higgs mechanism. Beyond classical spin ice, the book describes the new physics emerging when quantum coherence (spin liquids, photon-like excitations) and itinerant electrons (anomalous Hall effect) are included in artificial systems. This first book dedicated to spin ice is a review of the current understanding of the field, both on the theoretical and experimental levels, written by leading experts. The book is written in a linear way with very few prerequisites. It also contains textbook-like descriptions of theoretical methods to help advanced students and researchers to enter the field.


Handbook of Modern Ferromagnetic Materials

Handbook of Modern Ferromagnetic Materials

Author: Alex Goldman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 656

ISBN-13: 1461549175

DOWNLOAD EBOOK

Below is a copy of Professor Takeshi Takei's original preface that he wrote for my first book, Modem Ferrite Teclmology. I was proud to receive this preface and include it here with pride and affection. We were saddened to learn of his death at 92 on March 12, 1992. Preface It is now some 50 years since ferrites debuted as an important new category of magnetic materials. They were prized for a range of properties that had no equivalents in existing metal magnetic materials, and it was not long before full-fledged research and development efforts were underway. Today, ferrites are employed in a truly wide range of applications, and the efforts of the many men and women working in the field are yielding many highly intriguing results. New, high-performance products are appearing one after another, and it would seem we have only scratched the surface of the hidden possibilities of these fascinating materials. Dr. Alex Goldman is well qualified to talk about the state of the art in ferrites. For many years Dr. Goldman has been heavily involved in the field as director of the research and development division of Spang & Co. and other enterprises. This book, Modem Ferrite Technology, based in part on his own experiences, presents a valuable overview of the field. It is testimony to his commitment and bountiful knowledge about one oftoday's most intriguing areas of technology.


Handbook of Spin Transport and Magnetism

Handbook of Spin Transport and Magnetism

Author: Evgeny Y. Tsymbal

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 797

ISBN-13: 1439803781

DOWNLOAD EBOOK

In the past several decades, the research on spin transport and magnetism has led to remarkable scientific and technological breakthroughs, including Albert Fert and Peter Grunberg's Nobel Prize-winning discovery of giant magnetoresistance (GMR) in magnetic metallic multilayers. Handbook of Spin Transport and Magnetism provides a comprehensive, bal


Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds

Pressure-Induced Phase Transitions in AB2X4 Chalcogenide Compounds

Author: Francisco Javier Manjon

Publisher: Springer Science & Business Media

Published: 2014-01-21

Total Pages: 248

ISBN-13: 3642403670

DOWNLOAD EBOOK

This book on pressure-induced phase transitions in AB2X4 chalcogenide compounds deals with one important AmBnXp material. The interest in these materials is caused by their properties. The results are discussed for three main groups of structural families: cubic-spinel structures, defective tetragonal structures, and other structures like layered and wurtzite-type modifications. A systematic analysis of the behavior of cubic (spinel), tetragonal (defect chalcopyrites and stannites) and other crystal modifications of AB2X4 compounds under hydrostatic pressure is performed. The behavior of AIIAl2S4, AIIGa2S4, AIIAl2Se4 and AIIGa2Se4 compounds with defective tetragonal structures, compounds with layered and wurtzite structures under hydrostatic pressure and the pressure dependence of the band gap, lattice parameters, interatomic distances, vibrational modes and pressure-induced phase transitions is discussed. Many of these compounds, except oxide spinels, undergo a pressure-induced phase transition towards the rocksalt-type structure. The phase transition is preceded by disorder in the cation sublattice. The dependence of the transition pressure to the rocksalt-type structure as a function of the compound ionicity and the size criterion is analyzed. At high pressures, all ordered-vacancy compounds are found to exhibit a band anticrossing between several conduction bands that leads to a strong decrease of its pressure coefficient and consequently to a strong non-linear pressure dependence of the direct bandgap energy. Theoretical studies of phase transitions in several ordered-vacancy compounds reveal that the existence of ordered vacancies alter the cation-anion bond distances and their compressibilities. The book is written for students, Ph D. students and specialists in materials science, phase transitions and new materials.


Novel Magnetic Nanostructures

Novel Magnetic Nanostructures

Author: Natalia Domracheva

Publisher: Elsevier

Published: 2018-06-14

Total Pages: 492

ISBN-13: 0128135956

DOWNLOAD EBOOK

Novel Magnetic Nanostructures: Unique Properties and Applications reviews the synthesis, design, characterization and unique properties of emerging nanostructured magnetic materials. It discusses the most promising and relevant applications, including data storage, spintronics and biomedical applications. Properties investigated include electronic, self-assembling, multifunctional, and magnetic properties, along with magnetic phenomena. Structures range from magnetic nanoclusters, nanoparticles, and nanowires, to multilayers and self-assembling nanosystems. This book provides a better understanding of the static and dynamic magnetism in new nanostructures for important applications. - Provides an overview of the latest research on novel magnetic nanostructures, including molecular nanomagnets, metallacrown magnetic nanostructures, magnetic dendrimers, self-assembling magnetic structures, multifunctional nanostructures, and much more - Reviews the synthesis, design, characterization and detection of useful properties in new magnetic nanostructures - Highlights the most relevant applications, including spintronic, data storage and biomedical applications


Introduction to Ferroic Materials

Introduction to Ferroic Materials

Author: Vinod Wadhawan

Publisher: CRC Press

Published: 2000-12-21

Total Pages: 765

ISBN-13: 1482283050

DOWNLOAD EBOOK

Ferroic materials are important, not only because of the improved understanding of condensed matter, but also because of their present and potential device applications. This book presents a unified description of ferroic materials at an introductory level, with the unifying factor being the occurrence of nondisruptive phase transitions in crystals


Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications

Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications

Author: Raghvendra Singh Yadav

Publisher: Elsevier

Published: 2020-10-29

Total Pages: 212

ISBN-13: 0128212918

DOWNLOAD EBOOK

Advanced Spinel Ferrite Nanocomposites for Electromagnetic Interference Shielding Applications presents recent developments in advanced spinel ferrite nanocomposites for electromagnetic interference shielding, including microwave absorption applications. The book includes the basics of shielding mechanisms, synthesis of advanced nanocomposites, and characterization, as well as results analysis. It also discusses the relationship between nanocomposite structure and physical properties. The book systematically explores how spinel ferrite nanoparticle composites are utilized with polymer, carbon source materials (carbon nanotube, graphene, etc.), metal nanoparticles, metal oxide nanoparticles, hard ferrite nanoparticles, glass, rubber, wood, fabrics/textiles, and cement/concrete in the development of advanced spinel ferrite nanocomposites for electromagnetic interference shielding application. Academics, scientists, engineers, students, and industrial researchers will find this book beneficial. - Provides an overview of recent developments on advanced spinel ferrite nanocomposites for electromagnetic interference shielding - Outlines fundamental concepts of electromagnetic shielding mechanisms in nanocomposites - Explores the design of a variety of nanocomposites, discussion on their structure and physical properties, used for electromagnetic shielding applications