Magnetic Properties of Layered Transition Metal Compounds

Magnetic Properties of Layered Transition Metal Compounds

Author: L.J. de Jongh

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 430

ISBN-13: 9400918607

DOWNLOAD EBOOK

In the last two decades low-dimensional (low-d) physics has matured into a major branch of science. Quite generally we may define a system with restricted dimensionality d as an object that is infinite only in one or two spatial directions (d = 1 and 2). Such a definition comprises isolated single chains or layers, but also fibres and thin layers (films) of varying but finite thickness. Clearly, a multitude of physical phenomena, notably in solid state physics, fall into these categories. As examples, we may mention: • Magnetic chains or layers (thin-film technology). • Metallic films (homogeneous or heterogeneous, crystalline, amorphous or microcristalline, etc.). • I-d or 2-d conductors and superconductors. • Intercalated systems. • 2-d electron gases (electrons on helium, semiconductor interfaces). • Surface layer problems (2-d melting of monolayers of noble gases on a substrate, surface problems in general). • Superfluid films of ~He or 'He. • Polymer physics. • Organic and inorganic chain conductors, superionic conductors. • I-d or 2-d molecular crystals and liquid crystals. • I-d or 2-d ferro- and antiferro electrics.


Magnetic Properties of Organic Materials

Magnetic Properties of Organic Materials

Author: Paul M. Lahti

Publisher: CRC Press

Published: 1999-05-13

Total Pages: 754

ISBN-13: 9780824719760

DOWNLOAD EBOOK

Provides an extensive overview of the last three decades of research on the structures and magnetic behaviors of organic and organometallic substances-building a solid foundation for future research into applications of molecular materials based on organic paramagnetic and polymeric systems. Provides the essential body of knowledge for an organically oriented materials science of electronic materials.


Graphite Intercalation Compounds and Applications

Graphite Intercalation Compounds and Applications

Author: Toshiaki Enoki

Publisher: Oxford University Press, USA

Published: 2003

Total Pages: 453

ISBN-13: 0195128273

DOWNLOAD EBOOK

Graphite intercalation compounds are a new class of electronic materials that are classified as graphite-based host guest systems. They have specific structural features based on the alternating stacking of graphite and guest intercalate sheets. The electronic structures show two-dimensional metallic properties with a large variety of features including superconductivity. They are also interesting from the point of two-dimensional magnetic systems. This book presents the synthesis, crystal structures, phase transitions, lattice dynamics, electronic structures, electron transport properties, magnetic properties, surface phenomena, and applications of graphite intercalation compounds. The applications covered include batteries, highly conductive graphite fibers, exfoliated graphite and intercalated fullerenes and nanotubes.


Complex Oxides: An Introduction

Complex Oxides: An Introduction

Author: Thomas Vogt

Publisher: World Scientific

Published: 2019-03-20

Total Pages: 238

ISBN-13: 9813278595

DOWNLOAD EBOOK

Chapter contribution from John B Goodenough, Nobel Laureate in Chemistry 2019.This book provides a unique look at the chemistry and properties of complex metal oxides from the perspectives of some of the most active researchers on this class of materials. Applications of complex oxide materials are highly varied. Topics reviewed in this volume include solid-state battery research, the chemistry of transparent conductors, ternary uranium oxides, magnetic perovskites, non-linear optical materials, complex molybdenum-vanadium bronzes and other complex materials used in selective oxidation catalysis. It is written to serve as an introduction to the subject for and those beginning to work on these materials, particularly new graduate students.


Chemical Physics of Intercalation

Chemical Physics of Intercalation

Author: A.P. Legrand

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 503

ISBN-13: 1475796498

DOWNLOAD EBOOK

Conjugated polymers suoh as polyaoetylene (CH)x polyphenylene (C6H4)x' poly thiophene (C4H2S)x' etc., which are insulators in their pristine state, can be brought to the metallic state after "doping" with ohemioal speoies whioh oan be either eleotron donors or I aoceptors. . This doping prooess involves a oharge transfer between the dopant moleoule and the polymer ohain whioh are then supposed to be spatially olose to each other. It follows that the meohanism of doping must be oonsidered as an aotual interoalation process, which will greatly affeot the struotural oharacteristios of the starting material, as well as its morphology, as has been observed during the 2 intercalation of graphite and layered compounds . In parallel with these modifioations, the band struoture of the system changes yielding a new set of eleotronio properties. It is evident therefore that the struotural and eleotronio properties are intimately related, and must be studied simultaneously in the same system to give reliable information. A great number of studies have been devoted to the structural and electronic properties of conjugated polymers after a chemical or 2 electrochemical doping process . Most of these concern the properties of the system for a given dopant concentration. With this approach a universal pioture of the polymer/dopant system is very diffioult to obtain, as a comparison between different experiments is very hazardous. On the other hand, only a small number of measurements have been performed during the continuous electroohemioal doping of various polymers.


Metal-Organic and Organic Molecular Magnets

Metal-Organic and Organic Molecular Magnets

Author: Peter Day

Publisher: Royal Society of Chemistry

Published: 2007-10-31

Total Pages: 333

ISBN-13: 1847551394

DOWNLOAD EBOOK

Traditionally, magnetic materials have been metals or, if inorganic compounds such as oxides, of continuous lattice type. However, in recent years chemists have synthesized increasing numbers of crystalline solids based on molecular building blocks in the form of coordination and organometallic complexes or purely organic molecules, which exhibit spontaneous magnetization. In striking contrast to conventional magnets, these materials are made from solutions close to room temperature rather than by metallurgical or ceramic methods. This book, which originates from contributions to a Discussion Meeting of The Royal Society of London, brings together many of the leading international practitioners in the field, who survey their own recent work and place it in the context of the wider fields of magnetism and supramolecular chemistry. All aspects of molecular-based magnets are addressed, including synthesis, structure-property relations and physical properties. Contents include details of the characterization of the first purely organic ferromagnet, the synthesis of high coercivity materials and a unique description of new materials with Curie temperatures well above ambient. A coherent survey of this rapidly developing field for the more general reader, Metal-Organic and Organic Molecular Magnets will also be welcomed by researchers and lecturers in materials science and inorganic or solid state chemistry.


Solitons

Solitons

Author: S.E. Trullinger

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 916

ISBN-13: 0444598294

DOWNLOAD EBOOK

In the twenty years since Zabusky and Kruskal coined the term ``soliton'', this concept changed the outlook on certain types of nonlinear phenomena and found its way into all branches of physics. The present volume deals with a great variety of applications of the new concept in condensed-matter physics, which is particularly reached in experimentally observable occurrences. The presentation is not centred around the mathematical aspects; the emphasis is on the physical nature of the nonlinear phenomena occurring in particular situations.With its emphasis on concrete, mostly experimentally verifiable cases, ``Solitons'' constitutes a very readable and instructive introduction to the subject as well as an up-to-date account of current developments in a field of research reaching maturity.


Hyper-structured Molecules I

Hyper-structured Molecules I

Author: Hiroyuki Sasabe

Publisher: CRC Press

Published: 1999

Total Pages: 226

ISBN-13: 9789056991333

DOWNLOAD EBOOK

Hyper-structured molecules are topologically well-defined molecules in two or three dimensions and are expected to show novel quantum effects in the molecules themselves or in molecular sequences. This book, covering the supramolecular chemistry and characterization of hyper-structured molecules, provides an invaluable resource on the design and synthesis of topologically controlled molecules such as dendritic polymers, and on ways to handle them using techniques such as photon scanning tunneling microscopy. The book presents a comprehensive discussion of the real application of hyper-structured molecules to organic quantum devices for molecular electronics, photonics and spinics and should be of interest to all researchers working in supramolecular chemistry or molecular electronics.


Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials

Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials

Author: P. Ponte Castaneda

Publisher: Springer Science & Business Media

Published: 2004-09-15

Total Pages: 740

ISBN-13: 9781402026225

DOWNLOAD EBOOK

Although several books and conference proceedings have already appeared dealing with either the mathematical aspects or applications of homogenization theory, there seems to be no comprehensive volume dealing with both aspects. The present volume is meant to fill this gap, at least partially, and deals with recent developments in nonlinear homogenization emphasizing applications of current interest. It contains thirteen key lectures presented at the NATO Advanced Workshop on Nonlinear Homogenization and Its Applications to Composites, Polycrystals and Smart Materials. The list of thirty one contributed papers is also appended. The key lectures cover both fundamental, mathematical aspects of homogenization, including nonconvex and stochastic problems, as well as several applications in micromechanics, thin films, smart materials, and structural and topology optimization. One lecture deals with a topic important for nanomaterials: the passage from discrete to continuum problems by using nonlinear homogenization methods. Some papers reveal the role of parameterized or Young measures in description of microstructures and in optimal design. Other papers deal with recently developed methods – both analytical and computational – for estimating the effective behavior and field fluctuations in composites and polycrystals with nonlinear constitutive behavior. All in all, the volume offers a cross-section of current activity in nonlinear homogenization including a broad range of physical and engineering applications. The careful reader will be able to identify challenging open problems in this still evolving field. For instance, there is the need to improve bounding techniques for nonconvex problems, as well as for solving geometrically nonlinear optimum shape-design problems, using relaxation and homogenization methods.