Provides unique coverage of wireless sensor system applications in space, underwater, underground, and extreme industrial environments in one volume This book covers the challenging aspects of wireless sensor systems and the problems and conditions encountered when applying them in outer space, under the water, below the ground, and in extreme industrial environments. It explores the unique aspects of designs and solutions that address those problems and challenges, and illuminates the connections, similarities, and differences between the challenges and solutions in those various environments. The creation of Wireless Sensor Systems for Extreme Environments is a response to the spread of wireless sensor technology into fields of health, safety, manufacturing, space, environmental, smart cities, advanced robotics, surveillance, and agriculture. It is the first of its kind to present, in a single reference, the unique aspects of wireless sensor system design, development, and deployment in such extreme environments—and to explore the similarities and possible synergies between them. The application of wireless sensor systems in these varied environments has been lagging dramatically behind their application in more conventional environments, making this an especially relevant book for investigators and practitioners in all of these areas. Wireless Sensor Systems for Extreme Environments is presented in five parts that cover: Wireless Sensor Systems for Extreme Environments—Generic Solutions Space WSS Solutions and Applications Underwater and Submerged WSS Solutions Underground and Confined Environments WSS Solutions Industrial and Other WSS Solutions This book is a welcome guide for researchers, post-graduate students, engineers and scientists who design and build operational and environmental control systems, emergency response systems, and situational awareness systems for unconventional environments.
Body-centric wireless sensor networks are expected to enable future technologies such as medical in-body micro robots or unobtrusive smart textiles. These technologies may advance personalized healthcare as they allow for tasks such as minimally invasive surgery, in-body diagnosis, and continuous activity recognition. However, the localization of individual sensor nodes within such networks or the determination of the entire network topology still pose challenges that need to be solved. This work provides both theoretic and simulative insights to enable the required sub-millimeter localization accuracy of such sensors using magneto-inductive networks. It identifies inherent localization issues such as the asymmetry of the position estimation in magneto-inductive networks and outlines how such issues may be addressed by using passive relays or cooperation. It further proposes a novel approach to recognize the entire structure of a magneto-inductive network using simple impedance measurements and clusters of passive tags. This approach is evaluated extensively by simulation and experiment to demonstrate the feasibility of low-cost human body posture recognition.
This book introduces the various approaches and tools used for modelling different propagation environments and lays the foundation for developing a unified theoretical framework for future integrated communication networks. In the case of each type of network, the book uses basic concepts of physics, mathematics, geometry and probability theory to study the impact of the dimension and shape of the propagation environment and relative transmit-receive position on the information flow. The book provides an introduction into wireless communication systems and networks and their applications. For both systems and networks, the basic hard (encoder, modulator, etc.) and soft components (information, signal, etc.) are discussed through schematic block diagrams. Next each of the modes of communication, namely radio waves, acoustic waves, magnetic induction, optical waves, biological particles (molecules, aerosols, neural synapse etc.) and quantum field, are discussed. For each communication scenario presented, the impact of different environmental factors on the propagation phenomenon is articulated, followed by different channel modelling (deterministic, analytical, and stochastic) techniques that are used to characterize the propagation environment. Finally future trends in wireless communication networks are examined and envisioned for next generations 6G/7G of communication systems, like space information networks, sea-to-sky internet of vehicles, and internet of bio-nano things. Based on the future trends of integrated networks, the book drives the need for a generalized channel model irrespective of the media and mode of information transfer. The primary audience for the book is post-graduate students, researchers and academics in electronics and communications engineering, electrical engineering and computer science.
The National Academies of Sciences, Engineering, and Medicine's Army Research Laboratory Technical Assessment Board (ARLTAB) provides biennial assessments of the scientific and technical quality of the research, development, and analysis programs at the Army Research Laboratory (ARL), focusing on ballistics sciences, human sciences, information sciences, materials sciences, and mechanical sciences. This interim report summarizes the findings of the ARLTAB for the first year of this biennial assessment; the current report addresses approximately half the portfolio for each campaign; the remainder will be assessed in 2018.
This book presents an in-depth study on the recent advances in Wireless Sensor Networks (WSNs). The authors describe the existing WSN applications and discuss the research efforts being undertaken in this field. Theoretical analysis and factors influencing protocol design are also highlighted. The authors explore state-of-the-art protocols for WSN protocol stack in transport, routing, data link, and physical layers. Moreover, the synchronization and localization problems in WSNs are investigated along with existing solutions. Furthermore, cross-layer solutions are described. Finally, developing areas of WSNs including sensor-actor networks, multimedia sensor networks, and WSN applications in underwater and underground environments are explored. The book is written in an accessible, textbook style, and includes problems and solutions to assist learning. Key Features: The ultimate guide to recent advances and research into WSNs Discusses the most important problems and issues that arise when programming and designing WSN systems Shows why the unique features of WSNs – self-organization, cooperation, correlation -- will enable new applications that will provide the end user with intelligence and a better understanding of the environment Provides an overview of the existing evaluation approaches for WSNs including physical testbeds and software simulation environments Includes examples and learning exercises with a solutions manual; supplemented by an accompanying website containing PPT-slides. Wireless Sensor Networks is an essential textbook for advanced students on courses in wireless communications, networking and computer science. It will also be of interest to researchers, system and chip designers, network planners, technical mangers and other professionals in these fields.
Started by small group of well known scientists with the aim of sharing knowledge, experiences, and results on all aspects of cluster computing, the initiative of a workshop on cluster computing received more attention after IFIP WG 10.3 and IEEE Romania Section accepted our request for sponsorship. Moreover, the application for a NATO ARW grant was successful, leading to a greater interest in the workshop. In this respect, we have to say that we chose Romania in order to attract scientists from Central and Eastern European countries and improve the cooperation in the region, in the field of cluster computing. We had an extremely short time to organize the event, but many people joined us and enthusiastically contributed to the process. The success of the workshop is wholly due to the hard work of the organizing committee, members of the program committee, key speakers, speakers from industry, and authors of accepted papers. The workshop consisted of invited and regular paper presentations, followed by discussions, on many important current and emerging topics ranging from sheduling and load balancing to grids. The key speakers devoted their time and efforts to presenting the most interesting results of their research groups, and we all thank them for this . All papers were peer reviewed by two or three reviewers.
This textbook covers all related communication technologies of underwater wireless communication, such as acoustic communication, optical communication, and magneto-inductive communication. After describing each technology, the authors relay their pros and cons, as it is essential to learn the underlying mechanism, advancements, and limitations of these techniques. Therefore, this book provides basics fundamentals of the three technologies, their advantages and disadvantages, and their applications. The authors also introduce research trends, pointing readers in the direction of research in the field of underwater wireless communication. The book is an essential textbook for undergraduate and graduate students in the field of underwater communications. The book is also useful as a reference to undergraduate engineering students, science students, and practicing engineers. The book includes end-of-chapter questions and numerical problems.
This book constitutes the thoroughly refereed post-conference proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2016, held in Rome, Italy, in February 2016. The 22 revised full papers presented were carefully reviewed and selected from a total of 321 submissions. The papers are organized in topical sections on biomedical electronics and devices; bioimaging; bioinformatics models, methods and algorithms; bio-inspired systems and signal processing; health informatics.
This book presents the proceedings of the 6th International Conference on Wireless Intelligent and Distributed Environment for Communication (WIDECOM 2023), which took place at Brock University, St. Catharines, Ontario, Canada, October 11-13, 2023. The book addresses issues related to new dependability paradigms, design, and performance of dependable network computing and mobile systems, as well as issues related to the security of these systems. The goal of the conference is to provide a forum for researchers, students, scientists and engineers working in academia and industry to share their experiences, new ideas and research results in the above-mentioned areas.