Explosively Driven Pulsed Power

Explosively Driven Pulsed Power

Author: Andreas A. Neuber

Publisher: Springer Science & Business Media

Published: 2005-11-04

Total Pages: 282

ISBN-13: 354028673X

DOWNLOAD EBOOK

While the basic operating principles of Helical Magnetic Flux Compression Generators are easy to understand, the details of their construction and performance limits have been described only in government reports, many of them classified. Conferences in the field of flux compression are also dominated by contributions from government (US and foreign) laboratories. And the government-sponsored research has usually been concerned with very large generators with explosive charges that require elaborate facilities and safety arrangements. This book emphasizes research into small generators (less than 500 grams of high explosives) and explains in detail the physical fundamentals, construction details, and parameter-variation effects related to them.


Magnetocumulative Generators

Magnetocumulative Generators

Author: Larry L. Altgilbers

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 430

ISBN-13: 1461212324

DOWNLOAD EBOOK

A discussion of explosive pulsed power systems and their applications, this book consists of 7 chapters. The first five describe the basic physics of these sources and their ancillary equipment, based on a manual for training engineers in Russia. Chapter 6 is a description of codes and methodologies used at Loughborough University in the UK to build flux compressors, while Chapter 7 covers two specific applications: high power lasers and high power microwave sources. The book introduces all types of explosive power sources and their ancillary equipment, the procedures required to build them, and specific applications.


Explosive Pulsed Power

Explosive Pulsed Power

Author: Larry L. Altgilbers

Publisher: World Scientific

Published: 2011

Total Pages: 597

ISBN-13: 1848163223

DOWNLOAD EBOOK

Explosive pulsed power generators are devices that either convert the chemical energy stored in explosives into electrical energy or use the shock waves generated by explosives to release energy stored in ferroelectric and ferromagnetic materials. The objective of this book is to acquaint the reader with the principles of operation of explosive generators and to provide details on how to design, build, and test three types of generators: flux compression, ferroelectric, and ferromagnetic generators, which are the most developed and the most near term for practical applications. Containing a considerable amount of new experimental data that has been collected by the authors, this is the first book that treats all three types of explosive pulsed power generators. In addition, there is a brief introduction to a fourth type ix explosive generator called a moving magnet generator. As practical applications for these generators evolve, students, scientists, and engineers will have access to the results of a considerable body of experience gained by almost 10 years of intense research and development by the authors.


Investigation of the Compression of Magnetized Plasma and Magnetic Flux

Investigation of the Compression of Magnetized Plasma and Magnetic Flux

Author: Dimitry Mikitchuk

Publisher: Springer

Published: 2019-06-28

Total Pages: 103

ISBN-13: 3030208559

DOWNLOAD EBOOK

The present research studies the fundamental physics occurring during the magnetic flux and magnetized plasma compression by plasma implosion. This subject is relevant to numerous studies in laboratory and space plasmas. Recently, it has attracted particular interest due to the advances in producing high-energy-density plasmas in fusion-oriented experiments, based on the approach of magnetized plasma compression. The studied configuration consists of a cylindrical gas-puff shell with pre-embedded axial magnetic field that pre-fills the anode-cathode gap. Subsequently, axial pulsed current is driven through the plasma generating an azimuthal magnetic field that compresses the plasma and the axial magnetic field embedded in it. A key parameter for the understanding of the physics occurring during the magnetized plasma compression is the evolution and distribution of the axial and azimuthal magnetic fields. Here, for the first time ever, both fields are measured simultaneously employing non-invasive spectroscopic methods that are based on the polarization properties of the Zeeman effect. These measurements reveal unexpected results of the current distribution and the nature of the equilibrium between the axial and azimuthal fields. These observations show that a large part of the current does not flow in the imploding plasma, rather it flows through a low-density plasma residing at large radii. The development of a force-free current configuration is suggested to explain this phenomenon. Previously unpredicted observations in higher-power imploding-magnetized-plasma experiments, including recent unexplained structures observed in the Magnetized Liner Inertial Fusion experiment, may be connected to the present discovery.


Iron Dominated Electromagnets: Design, Fabrication, Assembly And Measurements

Iron Dominated Electromagnets: Design, Fabrication, Assembly And Measurements

Author: Jack T Tanabe

Publisher: World Scientific Publishing Company

Published: 2005-05-06

Total Pages: 355

ISBN-13: 9813101989

DOWNLOAD EBOOK

This unique book, written by one of the world's foremost specialists in the field, is devoted to the design of low and medium field electromagnets whose field level and quality (uniformity) are dominated by the pole shape and saturation characteristics of the iron yoke.The wide scope covers material ranging from the physical requirements for typical high performance accelerators, through the mathematical relationships which describe the shape of two-dimensional magnetic fields, to the mechanical fabrication, assembly, installation, and alignment of magnets in a typical accelerator lattice. In addition, stored energy concepts are used to develop magnetic force relationships and expressions for magnets with time varying fields.The material in the book is derived from lecture notes used in a course at the Lawrence Livermore National Laboratory and subsequently expanded for the U.S. Particle Accelerator School, making this text an invaluable reference for students planning to enter the field of high energy physics.Mathematical relationships tying together magnet design and measurement theory are derived from first principles, and chapters are included that describe mechanical design, fabrication, installation, and alignment. Some fabrication and assembly practices are reviewed to ensure personnel and equipment safety and operational reliability of electromagnets and their power supply systems. This additional coverage makes the book an important resource for those already in the particle accelerator business as well as those requiring the design and fabrication of low and medium field level magnets for charged particle beam transport in ion implantation and medical applications.


Space Physics and Aeronomy, Magnetospheres in the Solar System

Space Physics and Aeronomy, Magnetospheres in the Solar System

Author: Romain Maggiolo

Publisher: John Wiley & Sons

Published: 2021-05-04

Total Pages: 61

ISBN-13: 1119507529

DOWNLOAD EBOOK

An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief