Magnesium Alloys for Biomedical Applications

Magnesium Alloys for Biomedical Applications

Author: Deepak Kumar

Publisher: CRC Press

Published: 2024-04-26

Total Pages: 264

ISBN-13: 104001660X

DOWNLOAD EBOOK

Magnesium alloys have enormous potential for use in biomedical implants. Magnesium Alloys for Biomedical Applications delves into recent advances and prospects for implementation and provides scientific insights into current issues posed by Mg alloy materials. It provides an overview of research on their mechanical and tribological characteristics, corrosion tendencies, and biological characteristics, with a particular emphasis on biomedical implants. Details the fundamentals of Mg alloys as well as necessary surface modifications of Mg alloys for biomedical use. Discusses emerging Mg alloys and their composites. Covers mechanical, tribological, and chemical properties, as well as fatigue and corrosion. Highlights emerging manufacturing methods and advancements in new alloy design, composite manufacturing, unique structure design, surface modification, and recyclability. Helps readers identify appropriate Mg-based materials for their applications and select optimal improvement methods. Summarizes current challenges and suggests a roadmap for future research. Aimed at researchers in materials and biomedical engineering, this book explores the many breakthroughs achieved with these materials and where the field should concentrate to ensure the development of safe and reliable Mg alloy-based implants.


Magnesium and Its Alloys as Implant Materials

Magnesium and Its Alloys as Implant Materials

Author: Mirco Peron

Publisher: CRC Press

Published: 2020-03-18

Total Pages: 190

ISBN-13: 1000048756

DOWNLOAD EBOOK

Despite their tremendous potential, Mg and its alloys are not yet used in biomedical applications. This book aims to provide scientific insights into the challenges of the materials, and give an overview of the research regarding their mechanical properties, corrosion behaviour and biological performances. The authors intend to put the reader into the position to accurate discern the proper Mg-based material for his/her applications and to choose the proper improvement strategy to his/her cause. To this aim, the manuscript is structured as follow: in Section 2, the main challenges hampering the use of magnesium in biomedical applications and the common improvement strategies are listed. In Section 3, the most investigated Mg alloys are reported in separate sub-sections, detailing their mechanical properties, corrosion behaviour and biotoxicity. High-pure and ultra-high-pure Mg, Al-based Mg alloys, Zn-based Mg alloys, Ca-based alloys and RE-based Mg alloys have been considered. In Section 4, the alloys’ performances with respect to the challenges is summarized providing the reader with useful information and suggestions on the potentially most suited choice. Finally, in Section 5, an outlook portraying the authors’ opinion of the future development of the field will be provided. This book will allow biomedical engineers, surface scientists, material scientists, implant manufacturers and companies working on implant approval an overview of the state-of-the-art technologies adopted so far to overcome the drawbacks of Mg for biomedical applications. Particular emphasis is put on explaining the link between mechanical, corrosion and biocompatible properties of Mg and its alloys as well as their pros and cons. In doing so, the authors intend to put the reader into the position to accurate discern the proper Mg-based material for his/her applications and to choose the proper improvement strategy to his/her cause.


Advances in Wrought Magnesium Alloys

Advances in Wrought Magnesium Alloys

Author: Colleen Bettles

Publisher: Elsevier

Published: 2012-04-25

Total Pages: 478

ISBN-13: 0857093843

DOWNLOAD EBOOK

This important book summarises the wealth of recent research on our understanding of process-property relationships in wrought magnesium alloys and the way this understanding can be used to develop a new generation of alloys for high-performance applications. After an introductory overview of current developments in wrought magnesium alloys, part one reviews fundamental aspects of deformation behaviour. These chapters are the building blocks for the optimisation of processing steps covered in part two, which discusses casting, extrusion, rolling and forging technologies. The concluding chapters cover applications of wrought magnesium alloys in automotive and biomedical engineering. With its distinguished editors, and drawing on the work of leading experts in the field, Advances in wrought magnesium alloys is a standard reference for those researching, manufacturing and using these alloys. Summarises recent research on our understanding of process-property relationships in wrought magnesium alloys Discusses the way this understanding can be used to develop a new generation of alloys for high-performance applications Reviews casting, extrusion, rolling and forging technologies, fundamental aspects of deformation behaviour, and applications of wrought magnesium alloys in automotive and biomedical engineering


Magnesium Alloys as Degradable Biomaterials

Magnesium Alloys as Degradable Biomaterials

Author: Yufeng Zheng

Publisher: CRC Press

Published: 2015-10-09

Total Pages: 750

ISBN-13: 1498766633

DOWNLOAD EBOOK

Magnesium Alloys as Degradable Biomaterials provides a comprehensive review of the biomedical applications of biodegradable magnesium and its alloys. Magnesium has seen increasing use in orthopedic and cardiovascular applications over the last decade, particularly for coronary stents and bone implants.The book discusses the basic concepts of biodeg


Essential Readings in Magnesium Technology

Essential Readings in Magnesium Technology

Author: Suveen Mathaudhu

Publisher: Springer

Published: 2016-12-06

Total Pages: 609

ISBN-13: 3319480995

DOWNLOAD EBOOK

This is a compilation of the best papers in the history of Magnesium Technology, a definitive annual reference in the field of magnesium production and related light metals technologies. The volume contains a strong topical mix of application and fundamental research articles on magnesium technology. Section titles: 1.Magnesium Technology History and Overview 2.Electrolytic and Thermal Primary Production 3.Melting, Refining, Recycling, and Life-Cycle Analysis 4.Casting and Solidification 5.Alloy and Microstructural Design 6.Wrought Processing 7.Modeling and Simulation 8.Joining 9.Corrosion, Surface Treatment, and Coating


Magnesium Biomaterials

Magnesium Biomaterials

Author: Nicholas Travis Kirkland

Publisher: Springer Science & Business Media

Published: 2013-10-12

Total Pages: 142

ISBN-13: 3319021230

DOWNLOAD EBOOK

Magnesium Biomaterials provides a succinct up-to-date overview of Magnesium biomaterial development, critically examines the types of in vitro experiments that may be performed, and investigates the numerous variables that affect Magnesium biodegradation when undertaking these experiments. This work also discusses the direction in which current Magnesium biomaterial development is heading and the necessary steps for future development of this field. Information is drawn from numerous multi-disciplinary sources to provide a coherent and critical overview. Magnesium Biomaterials is ideal for researchers in the area of bio-Mg, companies interested in exploring their own alloys, and for researchers working with other biodegradable materials who are seeking a cross-platform understanding of material performance.


Surface Modification of Magnesium and its Alloys for Biomedical Applications

Surface Modification of Magnesium and its Alloys for Biomedical Applications

Author: T.S.N. Sankara Narayanan

Publisher: Elsevier

Published: 2015-01-08

Total Pages: 381

ISBN-13: 1782420827

DOWNLOAD EBOOK

Surface modification of magnesium and its alloys for biomedical applications: Biological interactions, mechanical properties and testing, the first of two volumes, is an essential guide on the use of magnesium as a degradable implant material. Due to their excellent biocompatibility and biodegradability, magnesium based degradable implants provide a viable option for the permanent metallic implants. This volume focuses on the fundamental concepts of surface modification of magnesium, its biological interactions, mechanical properties and, in vitro and in vivo testing. The contents of volume 1 is organized and presented in three parts. Part 1 reviews the fundamental aspects of surface modification of magnesium, including surface design, opportunities, challenges and its role in revolutionizing biodegradable biomaterials. Part 2 addresses the biological and mechanical properties covering an in vivo approach to the bioabsorbable behavior of magnesium alloys, mechanical integrity and, the effects of amino acids and proteins on the performance of surface modified magnesium. Part 3 delves in to testing and characterization, exploring the biocompatibility and effects on fatigue life alongside the primary characteristics of surface modified magnesium. All chapters are written by experts, this two volume series provides systematic and thorough coverage of all major modification technologies and coating types of magnesium and its alloys for biomedical applications. Expert analysis of the fundamentals in surface modification of magnesium and its alloys for biomedical applications Includes biological interactions and mechanical properties Focuses on testing and characterisation, as well as biocompatibility


Metallic Foam Bone

Metallic Foam Bone

Author: Cuie Wen

Publisher: Woodhead Publishing

Published: 2016-11-14

Total Pages: 262

ISBN-13: 008101290X

DOWNLOAD EBOOK

Metallic Foam Bone: Processing, Modification and Characterization and Properties examines the use of porous metals as novel bone replacement materials. With a strong focus on materials science and clinical applications, the book also examines the modification of metals to ensure their biocompatibility and efficacy in vivo. Initial chapters discuss processing and production methods of metals for tissue engineering and biomedical applications that are followed by topics on practical applications in orthopedics and dentistry. Finally, the book addresses the surface science of metallic foam and how it can be tailored for medical applications. This book is a valuable resource for materials scientists, biomedical engineers, and clinicians with an interest in innovative biomaterials for orthopedic and bone restoration. Introduces biomaterials researchers to a promising, rapidly developing technology for replacing hard tissue Increases familiarity with a range of technologies, enabling materials scientists and engineers to improve the material properties of porous metals Explores the clinical applications of metal foams in orthopedics and dentistry


Alloy Materials and Their Allied Applications

Alloy Materials and Their Allied Applications

Author: Inamuddin

Publisher: John Wiley & Sons

Published: 2020-06-16

Total Pages: 240

ISBN-13: 1119654882

DOWNLOAD EBOOK

Alloy Materials and Their Allied Applications provides an in-depth overview of alloy materials and applications. The 11 chapters focus on the fabrication methods and design of corrosion-resistant, magnetic, biodegradable, and shape memory alloys. The industrial applications in the allied areas, such as biomedical, dental implants, abrasive finishing, surface treatments, photocatalysis, water treatment, and batteries, are discussed in detail. This book will help readers solve fundamental and applied problems faced in the field of allied alloys applications.


Insight into Designing Biocompatible Magnesium Alloys and Composites

Insight into Designing Biocompatible Magnesium Alloys and Composites

Author: Manoj Gupta

Publisher: Springer

Published: 2015-01-14

Total Pages: 119

ISBN-13: 9812873724

DOWNLOAD EBOOK

This book critically summarizes the effects of various suitable alloying elements and particulate reinforcements on mechanical and degradation properties of pure Mg and Mg alloys targeting biomedical applications. The suitability of alloying elements and particulate reinforcements are discussed based on their levels of toxic effects on human body. First attempt is made to study and discuss on the various available synthesizing techniques for fabrication of both impermeable and porous Mg materials. Further, more emphasis on development of new magnesium matrix nanocomposites (MMNC) is made owing to the similarities between natural bone and MMNCs as bio-“nanocomposite”. The information on synthesis, toxicity of alloying elements and reinforcements and their effects on mechanical and degradation properties of pure Mg will enable the researchers to effectively design Mg alloys and composites targeting biomedical applications.