Magic and Antimagic Graphs

Magic and Antimagic Graphs

Author: Martin Bača

Publisher: Springer Nature

Published: 2019-09-14

Total Pages: 322

ISBN-13: 3030245829

DOWNLOAD EBOOK

Magic and antimagic labelings are among the oldest labeling schemes in graph theory. This book takes readers on a journey through these labelings, from early beginnings with magic squares up to the latest results and beyond. Starting from the very basics, the book offers a detailed account of all magic and antimagic type labelings of undirected graphs. Long-standing problems are surveyed and presented along with recent results in classical labelings. In addition, the book covers an assortment of variations on the labeling theme, all in one self-contained monograph. Assuming only basic familiarity with graphs, this book, complete with carefully written proofs of most results, is an ideal introduction to graph labeling for students learning the subject. More than 150 open problems and conjectures make it an invaluable guide for postgraduate and early career researchers, as well as an excellent reference for established graph theorists.


Super Edge-Antimagic Graphs

Super Edge-Antimagic Graphs

Author: Martin Baca

Publisher: Universal-Publishers

Published: 2008

Total Pages: 228

ISBN-13: 1599424657

DOWNLOAD EBOOK

Graph theory, and graph labeling in particular, are fast-growing research areas in mathematics. New results are constantly being discovered and published at a rapidly increasing rate due to the enormous number of open problems and conjectures in the field. This book deals mainly with the super edge-antimagic branch of graph labeling. It is written for specialists, but could be read also by postgraduate or undergraduate students with high school knowledge of mathematics and a vibrant interest in problem-solving.


Pearls in Graph Theory

Pearls in Graph Theory

Author: Nora Hartsfield

Publisher: Courier Corporation

Published: 2013-04-15

Total Pages: 276

ISBN-13: 0486315525

DOWNLOAD EBOOK

Stimulating and accessible, this undergraduate-level text covers basic graph theory, colorings of graphs, circuits and cycles, labeling graphs, drawings of graphs, measurements of closeness to planarity, graphs on surfaces, and applications and algorithms. 1994 edition.


Magic and Antimagic Labeling of Graphs

Magic and Antimagic Labeling of Graphs

Author: Kiki Ariyanti Sugeng

Publisher:

Published: 2005

Total Pages: 44

ISBN-13:

DOWNLOAD EBOOK

"A bijection mapping that assigns natural numbers to vertices and/or edges of a graph is called a labeling. In this thesis, we consider graph labelings that have weights associated with each edge and/or vertex. If all the vertex weights (respectively, edge weights) have the same value then the labeling is called magic. If the weight is different for every vertex (respectively, every edge) then we called the labeling antimagic. In this thesis we introduce some variations of magic and antimagic labelings and discuss their properties and provide corresponding labeling schemes. There are two main parts in this thesis. One main part is on vertex labeling and the other main part is on edge labeling." --Abstract.


Distance Magic-type and Distance Antimagic-type Labelings of Graphs

Distance Magic-type and Distance Antimagic-type Labelings of Graphs

Author:

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Abstract : Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection f from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G=(V,E) of order n is a bijection f from V to {1,2,...,n} with induced weight function w(x_{i})=\underset{x_{j}\in N(x_{i})}{\sum}f(x_{j}) \] such that f(x_{i})=i and the sequence of weights w(x_{1}),w(x_{2}),...,w(x_{n}) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i+1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n. In Chapter 2 we provide general constructions for every d at least 1 for large classes of both n and k, providing breadth and depth to the catalog of known H(n,k,d)'s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order n. If for a graph G=(V,E) of order n there exists an orientation of G and a companion bijection f from V to Gamma with the property that there is an element mu in Gamma (called the magic constant) such that \[ w(x)=\sum_{y\in N_{G}^{+}(x)}\overrightarrow{f}(y)-\sum_{y\in N_{G}^{-}(x)}\overrightarrow{f}(y)=\mu for every x in V where w(x) is the weight of vertex x, we say that G is orientable Gamma-distance magic}. In addition to introducing the concept, we provide numerous results on orientable Z_n distance magic graphs, where Z_n is the cyclic group of order n. In Chapter 7, we summarize the results of this dissertation and provide suggestions for future work.


Graceful, Harmonious and Magic Type Labelings

Graceful, Harmonious and Magic Type Labelings

Author: Susana C. López

Publisher: Springer

Published: 2017-02-26

Total Pages: 141

ISBN-13: 331952657X

DOWNLOAD EBOOK

Aimed toward upper undergraduate and graduate students in mathematics, this book examines the foremost forms of graph labelings including magic, harmonious, and graceful labelings. An overview of basic graph theory concepts and notation is provided along with the origins of graph labeling. Common methods and techniques are presented introducing readers to links between graph labels. A variety of useful techniques are presented to analyze and understand properties of graph labelings. The classical results integrated with new techniques, complete proofs, numerous exercises, and a variety of open problems, will provide readers with a solid understanding of graph labelings.


Magic Graphs

Magic Graphs

Author: Alison M. Marr

Publisher: Springer Science & Business Media

Published: 2012-11-06

Total Pages: 199

ISBN-13: 0817683917

DOWNLOAD EBOOK

Magic squares are among the more popular mathematical recreations. Over the last 50 years, many generalizations of “magic” ideas have been applied to graphs. Recently there has been a resurgence of interest in “magic labelings” due to a number of results that have applications to the problem of decomposing graphs into trees. Key features of this second edition include: · a new chapter on magic labeling of directed graphs · applications of theorems from graph theory and interesting counting arguments · new research problems and exercises covering a range of difficulties · a fully updated bibliography and index This concise, self-contained exposition is unique in its focus on the theory of magic graphs/labelings. It may serve as a graduate or advanced undergraduate text for courses in mathematics or computer science, and as reference for the researcher.


Fuzzy Graph Theory

Fuzzy Graph Theory

Author: Sunil Mathew

Publisher: Springer

Published: 2017-12-30

Total Pages: 331

ISBN-13: 3319714074

DOWNLOAD EBOOK

This book provides a timely overview of fuzzy graph theory, laying the foundation for future applications in a broad range of areas. It introduces readers to fundamental theories, such as Craine’s work on fuzzy interval graphs, fuzzy analogs of Marczewski’s theorem, and the Gilmore and Hoffman characterization. It also introduces them to the Fulkerson and Gross characterization and Menger’s theorem, the applications of which will be discussed in a forthcoming book by the same authors. This book also discusses in detail important concepts such as connectivity, distance and saturation in fuzzy graphs. Thanks to the good balance between the basics of fuzzy graph theory and new findings obtained by the authors, the book offers an excellent reference guide for advanced undergraduate and graduate students in mathematics, engineering and computer science, and an inspiring read for all researchers interested in new developments in fuzzy logic and applied mathematics.


Recent Advancements in Graph Theory

Recent Advancements in Graph Theory

Author: N. P. Shrimali

Publisher: CRC Press

Published: 2020-11-09

Total Pages: 411

ISBN-13: 1000210189

DOWNLOAD EBOOK

Graph Theory is a branch of discrete mathematics. It has many applications to many different areas of Science and Engineering. This book provides the most up-to-date research findings and applications in Graph Theory. This book focuses on the latest research in Graph Theory. It provides recent findings that are occurring in the field, offers insights on an international and transnational levels, identifies the gaps in the results, and includes forthcoming international studies and research, along with its applications in Networking, Computer Science, Chemistry, and Biological Sciences, etc. The book is written with researchers and post graduate students in mind.


Handbook of Product Graphs

Handbook of Product Graphs

Author: Richard Hammack

Publisher: CRC Press

Published: 2011-06-06

Total Pages: 537

ISBN-13: 1439813051

DOWNLOAD EBOOK

This handbook examines the dichotomy between the structure of products and their subgraphs. It also features the design of efficient algorithms that recognize products and their subgraphs and explores the relationship between graph parameters of the product and factors. Extensively revised and expanded, this second edition presents full proofs of many important results as well as up-to-date research and conjectures. It illustrates applications of graph products in several areas and contains well over 300 exercises. Supplementary material is available on the book's website.