Enables you to measure, isolate, and reduce rotating component's vibration, resonance, or misalignment problem. This book helps you to balance everything from ceiling fans to turbine engines, and select and apply balancing sensors and systems for single-plane and two-plane balancing and overhung and flexible-rotor balancing.
Machinery Vibration Analysis and Predictive Maintenance provides a detailed examination of the detection, location and diagnosis of faults in rotating and reciprocating machinery using vibration analysis. The basics and underlying physics of vibration signals are first examined. The acquisition and processing of signals is then reviewed followed by a discussion of machinery fault diagnosis using vibration analysis. Hereafter the important issue of rectifying faults that have been identified using vibration analysis is covered. The book also covers the other techniques of predictive maintenance such as oil and particle analysis, ultrasound and infrared thermography. The latest approaches and equipment used together with the latest techniques in vibration analysis emerging from current research are also highlighted. - Understand the basics of vibration measurement - Apply vibration analysis for different machinery faults - Diagnose machinery-related problems with vibration analysis techniques
Shows how to use state-of-the-art instrumentation - transducers and fast fourier transform (FFT) specturm analyzers - to monitor machine conditions using the vibration signature.
Mechanical Vibrations and Condition Monitoring presents a collection of data and insights on the study of mechanical vibrations for the predictive maintenance of machinery. Seven chapters cover the foundations of mechanical vibrations, spectrum analysis, instruments, causes and effects of vibration, alignment and balancing methods, practical cases, and guidelines for the implementation of a predictive maintenance program. Readers will be able to use the book to make predictive maintenance decisions based on vibration analysis. This title will be useful to senior engineers and technicians looking for practical solutions to predictive maintenance problems. However, the book will also be useful to technicians looking to ground maintenance observations and decisions in the vibratory behavior of machine components.
This comprehensivereference/text provides a thorough grounding in the fundamentals of rotating machinery vibration-treating computer model building, sources and types of vibration, and machine vibration signal analysis. Illustrating turbomachinery, vibration severity levels, condition monitoring, and rotor vibration cause identification, Ro
The purpose of this book is to serve as a reference text for the maintenance engineer and technician who is working with condition monitoring and predictive machinery maintenance technology. Broadly speaking, the subject is the principles of vibration theory and analysis as they apply to the determination of machine operating characteristics and deficiencies. The first chapter underscores the importance of vibration analysis in the field of predictive maintenance and root cause failure analysis.The chapters on vibration theory and frequency analysis lay the groundwork for the chapter on machine fault diagnostics based on vibration measurement and analysis. A systematic approach is used here to guide the reader through a logical sequence of steps to determine a machine's condition by detailed examination of vibration signatures.
Noise and Vibration Analysis is a complete and practical guide that combines both signal processing and modal analysis theory with their practical application in noise and vibration analysis. It provides an invaluable, integrated guide for practicing engineers as well as a suitable introduction for students new to the topic of noise and vibration. Taking a practical learning approach, Brandt includes exercises that allow the content to be developed in an academic course framework or as supplementary material for private and further study. Addresses the theory and application of signal analysis procedures as they are applied in modern instruments and software for noise and vibration analysis Features numerous line diagrams and illustrations Accompanied by a web site at www.wiley.com/go/brandt with numerous MATLAB tools and examples. Noise and Vibration Analysis provides an excellent resource for researchers and engineers from automotive, aerospace, mechanical, or electronics industries who work with experimental or analytical vibration analysis and/or acoustics. It will also appeal to graduate students enrolled in vibration analysis, experimental structural dynamics, or applied signal analysis courses.
An in-depth analysis of machine vibration in rotating machinery Whether it's a compressor on an offshore platform, a turbocharger in a truck or automobile, or a turbine in a jet airplane, rotating machinery is the driving force behind almost anything that produces or uses energy. Counted on daily to perform any number of vital societal tasks, turbomachinery uses high rotational speeds to produce amazing amounts of power efficiently. The key to increasing its longevity, efficiency, and reliability lies in the examination of rotor vibration and bearing dynamics, a field called rotordynamics. A valuable textbook for beginners as well as a handy reference for experts, Machinery Vibration and Rotordynamics is teeming with rich technical detail and real-world examples geared toward the study of machine vibration. A logical progression of information covers essential fundamentals, in-depth case studies, and the latest analytical tools used for predicting and preventing damage in rotating machinery. Machinery Vibration and Rotordynamics: Combines rotordynamics with the applications of machinery vibration in a single volume Includes case studies of vibration problems in several different types of machines as well as computer simulation models used in industry Contains fundamental physical phenomena, mathematical and computational aspects, practical hardware considerations, troubleshooting, and instrumentation and measurement techniques For students interested in entering this highly specialized field of study, as well as professionals seeking to expand their knowledge base, Machinery Vibration and Rotordynamics will serve as the one book they will come to rely upon consistently.
Nowadays, the engineering practice raises far more vibration problems than can be theoretically explained or modelled. Because Df this, measurements are used in almost all fields of industry, transportation and civil engineering in studies of mechanical and structural vibration. They are an invaluable tool for designing products and machines with high reliability and low noise level, vehicles and buildings with improved comfort and resistance to dynamic loads, as well as for obtaining increased safety of opera tion and optimum running parameters. In order to cope with the increasing demand for experimental measurement of vibration characteristics, young engineers and designers need an introductory book with emphasis on "what has to be measured" and "by what means" before learning "how measurements are done". The expertise to perform vibration measurements must be gained in time, with every new investi gation and studied problem . .A detailed presentation of instrumentation and measuring techniques is beyond the aim of this book. Such information can be found in product data sheets, application manuals and hand books supplied by equipment manufacturers. Only general princi ples and widely used methods are presented herein, in order to provide the reader with an overview of the instrumentation and techniques encountered in vibration measurement.