Advances in Artificial Intelligence and Data Engineering

Advances in Artificial Intelligence and Data Engineering

Author: Niranjan N. Chiplunkar

Publisher: Springer

Published: 2021-08-16

Total Pages: 0

ISBN-13: 9789811535161

DOWNLOAD EBOOK

This book presents selected peer-reviewed papers from the International Conference on Artificial Intelligence and Data Engineering (AIDE 2019). The topics covered are broadly divided into four groups: artificial intelligence, machine vision and robotics, ambient intelligence, and data engineering. The book discusses recent technological advances in the emerging fields of artificial intelligence, machine learning, robotics, virtual reality, augmented reality, bioinformatics, intelligent systems, cognitive systems, computational intelligence, neural networks, evolutionary computation, speech processing, Internet of Things, big data challenges, data mining, information retrieval, and natural language processing. Given its scope, this book can be useful for students, researchers, and professionals interested in the growing applications of artificial intelligence and data engineering.


Recent Advances in Artificial Intelligence and Data Engineering

Recent Advances in Artificial Intelligence and Data Engineering

Author: Pushparaj Shetty D.

Publisher: Springer Nature

Published: 2021-10-31

Total Pages: 454

ISBN-13: 9811633428

DOWNLOAD EBOOK

This book presents select proceedings of the International Conference on Artificial Intelligence and Data Engineering (AIDE 2020). Various topics covered in this book include deep learning, neural networks, machine learning, computational intelligence, cognitive computing, fuzzy logic, expert systems, brain-machine interfaces, ant colony optimization, natural language processing, bioinformatics and computational biology, cloud computing, machine vision and robotics, ambient intelligence, intelligent transportation, sensing and sensor networks, big data challenge, data science, high performance computing, data mining and knowledge discovery, and data privacy and security. The book will be a valuable reference for beginners, researchers, and professionals interested in artificial intelligence, robotics and data engineering.


Machine Learning and Computational Intelligence Techniques for Data Engineering

Machine Learning and Computational Intelligence Techniques for Data Engineering

Author: Pradeep Singh

Publisher: Springer Nature

Published: 2023-05-15

Total Pages: 885

ISBN-13: 9819900476

DOWNLOAD EBOOK

This book comprises the proceedings of the 4th International Conference on Machine Intelligence and Signal Processing (MISP2022). The contents of this book focus on research advancements in machine intelligence, signal processing, and applications. The book covers the real-time challenges involved while processing big data analytics and stream processing with the integration of smart data computing services and interconnectivity. It also includes the progress in signal processing to process the normal and abnormal categories of real-world signals such as signals generated from IoT devices, smart systems, speech, videos and involves biomedical signal processing: electrocardiogram (ECG), electroencephalogram (EEG), magnetoencephalography (MEG), electromyogram (EMG), etc. This book proves to be a valuable resource for those in academia and industry.


Computational Intelligence Techniques and Their Applications to Software Engineering Problems

Computational Intelligence Techniques and Their Applications to Software Engineering Problems

Author: Ankita Bansal

Publisher: CRC Press

Published: 2020-09-27

Total Pages: 267

ISBN-13: 1000191923

DOWNLOAD EBOOK

Computational Intelligence Techniques and Their Applications to Software Engineering Problems focuses on computational intelligence approaches as applicable in varied areas of software engineering such as software requirement prioritization, cost estimation, reliability assessment, defect prediction, maintainability and quality prediction, size estimation, vulnerability prediction, test case selection and prioritization, and much more. The concepts of expert systems, case-based reasoning, fuzzy logic, genetic algorithms, swarm computing, and rough sets are introduced with their applications in software engineering. The field of knowledge discovery is explored using neural networks and data mining techniques by determining the underlying and hidden patterns in software data sets. Aimed at graduate students and researchers in computer science engineering, software engineering, information technology, this book: Covers various aspects of in-depth solutions of software engineering problems using computational intelligence techniques Discusses the latest evolutionary approaches to preliminary theory of different solve optimization problems under software engineering domain Covers heuristic as well as meta-heuristic algorithms designed to provide better and optimized solutions Illustrates applications including software requirement prioritization, software cost estimation, reliability assessment, software defect prediction, and more Highlights swarm intelligence-based optimization solutions for software testing and reliability problems


Deep Learning and Missing Data in Engineering Systems

Deep Learning and Missing Data in Engineering Systems

Author: Collins Achepsah Leke

Publisher: Springer

Published: 2019-02-04

Total Pages: 179

ISBN-13: 9783030011796

DOWNLOAD EBOOK

Deep Learning and Missing Data in Engineering Systems uses deep learning and swarm intelligence methods to cover missing data estimation in engineering systems. The missing data estimation processes proposed in the book can be applied in image recognition and reconstruction. To facilitate the imputation of missing data, several artificial intelligence approaches are presented, including: deep autoencoder neural networks; deep denoising autoencoder networks; the bat algorithm; the cuckoo search algorithm; and the firefly algorithm. The hybrid models proposed are used to estimate the missing data in high-dimensional data settings more accurately. Swarm intelligence algorithms are applied to address critical questions such as model selection and model parameter estimation. The authors address feature extraction for the purpose of reconstructing the input data from reduced dimensions by the use of deep autoencoder neural networks. They illustrate new models diagrammatically, report their findings in tables, so as to put their methods on a sound statistical basis. The methods proposed speed up the process of data estimation while preserving known features of the data matrix. This book is a valuable source of information for researchers and practitioners in data science. Advanced undergraduate and postgraduate students studying topics in computational intelligence and big data, can also use the book as a reference for identifying and introducing new research thrusts in missing data estimation.


Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication

Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication

Author: E. S. Gopi

Publisher: Springer Nature

Published: 2021-05-28

Total Pages: 643

ISBN-13: 9811602891

DOWNLOAD EBOOK

This book is a collection of best selected research papers presented at the Conference on Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication (MDCWC 2020) held during October 22nd to 24th 2020, at the Department of Electronics and Communication Engineering, National Institute of Technology Tiruchirappalli, India. The presented papers are grouped under the following topics (a) Machine Learning, Deep learning and Computational intelligence algorithms (b)Wireless communication systems and (c) Mobile data applications and are included in the book. The topics include the latest research and results in the areas of network prediction, traffic classification, call detail record mining, mobile health care, mobile pattern recognition, natural language processing, automatic speech processing, mobility analysis, indoor localization, wireless sensor networks (WSN), energy minimization, routing, scheduling, resource allocation, multiple access, power control, malware detection, cyber security, flooding attacks detection, mobile apps sniffing, MIMO detection, signal detection in MIMO-OFDM, modulation recognition, channel estimation, MIMO nonlinear equalization, super-resolution channel and direction-of-arrival estimation. The book is a rich reference material for academia and industry.


Computational Intelligence in Power Engineering

Computational Intelligence in Power Engineering

Author: Bijaya Ketan Panigrahi

Publisher: Springer Science & Business Media

Published: 2010-09-20

Total Pages: 385

ISBN-13: 3642140122

DOWNLOAD EBOOK

This volume deals with different computational intelligence (CI) techniques for solving real world power industry problems. It will be extremely helpful for the researchers as well as the practicing engineers in the power industry.


Artificial Intelligence, Machine Learning, and Data Science Technologies

Artificial Intelligence, Machine Learning, and Data Science Technologies

Author: Neeraj Mohan

Publisher: CRC Press

Published: 2021-10-11

Total Pages: 311

ISBN-13: 1000460525

DOWNLOAD EBOOK

This book provides a comprehensive, conceptual, and detailed overview of the wide range of applications of Artificial Intelligence, Machine Learning, and Data Science and how these technologies have an impact on various domains such as healthcare, business, industry, security, and how all countries around the world are feeling this impact. The book aims at low-cost solutions which could be implemented even in developing countries. It highlights the significant impact these technologies have on various industries and on us as humans. It provides a virtual picture of forthcoming better human life shadowed by the new technologies and their applications and discusses the impact Data Science has on business applications. The book will also include an overview of the different AI applications and their correlation between each other. The audience is graduate and postgraduate students, researchers, academicians, institutions, and professionals who are interested in exploring key technologies like Artificial Intelligence, Machine Learning, and Data Science.


Machine Learning and Data Mining in Aerospace Technology

Machine Learning and Data Mining in Aerospace Technology

Author: Aboul Ella Hassanien

Publisher: Springer

Published: 2019-07-02

Total Pages: 236

ISBN-13: 3030202127

DOWNLOAD EBOOK

This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the ‘eagle eyes’ that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites – which can determine satellites’ current status and predict their failure based on telemetry data – is one of the most important current issues in aerospace engineering. This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data.


Computational Intelligence in Data Science

Computational Intelligence in Data Science

Author: Vallidevi Krishnamurthy

Publisher: Springer Nature

Published: 2021-12-11

Total Pages: 229

ISBN-13: 3030926001

DOWNLOAD EBOOK

This book constitutes the refereed post-conference proceedings of the Fourth IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2021, held in Chennai, India, in March 2021. The 20 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers cover topics such as computational intelligence for text analysis; computational intelligence for image and video analysis; blockchain and data science.